Comparative Study of Stock Price Forecasting Models PT. Unilever Indonesia Tbk Using Arima and Garch

Maya Citra
STEBIS Al Ulum Terpadu Medan

ABSTRACT
The purpose of this study is to know the comparison of forecasting models in predicting the stock price of PT. Unilever Indonesia Tbk. In this study, there are 2 forecasting models, namely ARIMA and GARCH forecasting. The population in this study is data on the daily closing price of PT. Unilever Indonesia Tbk for the period January 2018 to June 2021, so the sample in this study is 1090 time series data. The results showed that the best forecasting model to predict the stock price of PT. Unilever Indonesia Tbk for the period January 2018 to June 2021, so the sample in this study is 1090 time series data. The results showed that the best forecasting model to predict the stock price of PT. Unilever Indonesia Tbk, namely ARIMA (1,1,1) and GARCH (1,1). In the ARIMA model (1,1,1) there are assumptions that are not met, namely the assumption of homoscedasticity or in the model there is an element of heteroscedasticity so that the GARCH (1,1) model with MAPE 1.91% is selected as the best forecasting model to predict stock prices of PT. Unilever Indonesia Tbk.

Keywords: Stock prices, ARIMA, GARCH

Received: 05.04.2021 Revised: 22.04.2021 Accepted: 09.05.2021 Available online: 30.06.2021

Suggested citations:

Open Access | URLs:
https://ejournal.ipinternasional.com/index.php/ijcs/OpenAccessPolicy
INTRODUCTION

Throughout 2021 the global economy faces various challenges, including: rising energy prices, supply chain disruptions and the ongoing Evergrande crisis in China and risks affecting Indonesian capital flows, such as tapering off The FED and an increase in new cases, namely active variants Delta early Quarter III-2021. The governments of each country respond quickly to mitigate the risk of the Delta variant and remain optimistic until the end of the year. With the re-entry of foreign capital flows into developing countries will help increase the global stock index 2021. Where the Composite Stock Price Index (IHSG) has risen to a level of 6,500 at the end of 2021. Initially, the growth rate for the JCI recorded a new record of 6,723 on 22 November 2021, surpassed the JCI before the COVID-19 pandemic. Then, the number of investors in the capital market also increased by 92.7% to 7.48 million investors after December 29, 2021, compared to 3.88 million investors before the end of December 2020 (econ.go.id, 2021).

The manufacturing industry is a group of companies that produce and sell raw materials, materials and semi-finished products. The role of the manufacturing industry in Indonesia is very important, because it has become one of the industries that increases Indonesia’s economic growth and its ability to increase a country’s foreign exchange by producing tradable goods, creating jobs, increasing exports and attracting foreign investment.

According to the Ministry of Industry, in the second quarter of 2021, the manufacturing sector made a significant contribution to the country’s Gross Domestic Product (GDP) reaching 17.34%. The top two contributors from the manufacturing sector are the food and beverage industry (6.66%) and chemical, pharmaceutical and traditional medicine (1.96%). The total contribution to the GDP of the two industries is 8.62% and the manufacturing industry is the highest source of growth despite pressure from the COVID-19 pandemic (www.bkpm.go.id, 2021).

One of the companies engaged in manufacturing is PT. Unilever Indonesia Tbk (UNVR) which is one of the largest companies in Indonesia engaged in the production of consumer goods for the cosmetics and household industries and is one of the largest Fast Moving Consumer Goods (FMCG) companies in Indonesia, primarily engaged in the production, marketing and distribution of goods consumer. Even though the manufacturing sector is currently in an expansionary zone and is one of the main contributors to the country’s GDP in the second quarter of 2021. However, for PT. Unilever Indonesia Tbk (UNVR) is now in the public spotlight.

In Fundamental analysis PT. Unilever Indonesia Tbk (UNVR) is a stock that has good fundamentals, this can be seen clearly over a period of 35 years Unilever Indonesia’s share performance has continued to increase from the start after conducting an Initial Public Offering (IPO) on January 11, 1982 to 2017. Unilever is one of the Blue Chip shares incorporated in LQ45. Shares belonging to the Blue Chip stock category are stocks with a large market capitalization of over 40 trillion. Blue Chip shares are included in the superior stock category because they have a stock value that tends to be stable and is believed to have a smaller risk. Even though it is one of the
Blue Chip shares, Unilever is currently experiencing a decline in financial performance (Hendarsih & Harjunawati, 2020).

Literature Review
A. Theory Used
   1. Capital market
      According to (Mustapa & Ismail, 2019) the capital market is a place for various tradable long-term financial products, including bonds, stocks/shares, mutual funds, derivatives and other products. The Capital Market is a very interesting place because of the dynamic sale of shares. Stock prices always fluctuate due to various economic factors, such as inflation and the consumer price index.
   2. Share
      According to PT Bursa Efek Indonesia, (2021) Stocks are the most well-known financial market product. Offer attractive benefits. With companies issuing shares is one of the decisions taken by companies when they need funds for the company. According to Nurulhuda et al., (2021) Shares are securities that prove ownership of a company. If the company is profitable, investors are entitled to receive a portion of the company’s wealth and profits in the form of dividends.
      From this understanding, it can be concluded that shares are a sign of one’s ownership and prove the participation of capital in a company with the hope of getting profits in the long term. According to the Indonesian Stock Exchange PT, (2021) Basically, there are two advantages that investors get by buying or owning shares.
   3. Stock price
      According to Nelwan et al., (2020) share price is the price created by the company’s capabilities and market conditions that occur in the secondary market. The share price is the price per share in the capital market. According to Susanti & Wirakusuma, (2021) share price is the value of a piece of paper issued by the company, which informs the financial position, with other forms of intent the success of implementing financial management is measured by rising or falling stock prices.
   4. Forecasting
      According to Gunawan & Astika, (2021) forecasting is a science that is used to predict something in the future using historical data. According to Satria (2021) forecasting is an estimate for future testing with past data. In social life it is too difficult to predict accurately, so forecasting is needed.
      According to Ruamiana et al., (2018) Forecasting is the art and science of predicting future events by examining historical data with a view to finding systematic relationships, trends and patterns. According to Ariyanto et al., (2020) forecasting is a calculation analysis technique that can be carried out using both qualitative and quantitative approaches to predict future events using previous data references.
5. ARIMA (Autoregressive Integrated Moving Average)

According to Gunawan & Astika, (2021) the Autoregressive Integrated Moving Average (ARIMA) method is a method for increasing short-term forecasting accuracy that uses historical data patterns from the dependent variable as a basis for predicting the value of the dependent variable in the future by ignoring independent variables in making forecasts.

According to Salwa et al., (2018) the ARIMA method (Autoregressive Integrated Moving Average) is a method used for short-term forecasting. The ARIMA method has a good level of accuracy for short-term forecasting. If used for long-term forecasting this method is not good for forecasting, because the forecasting value will tend to be constant for a fairly long period.

METHOD

A. Types of research

The research conducted is Descriptive Research using data quantitative. According to Sugiyono, (2019) the descriptive research method is one of the methods used to determine the value of one or more independent variables without having to compare them with other variables. The aim of this research is to be able to predict the stock price of PT. Unilever Indonesia Tbk.

B. Sampling technique

According to Sugiyono, (2019) the sampling technique is a sampling technique. The sampling technique used in this study is a nonprobability sampling technique with a saturated sampling technique. According to Sugiyono, (2019) the saturated sampling technique is a sampling technique that uses all members of the population as samples. UNVR daily closing price data for the period January 2018 to June 2021 totaling 1090 time series data is the sample in this study.

C. Data Analysis Method

The data analysis method in this study uses the ARIMA and GARCH methods to be able to predict UNVR's stock price. There are several steps that must be taken in predicting UNVR's stock price using the ARIMA and GARCH methods.

RESULTS AND DISCUSSION

A. Description of Research Variables

PT. Unilever Indonesia Tbk (UNVR) which is one of the largest companies in Indonesia engaged in the production of consumer goods for the cosmetics and household industries and is one of the largest Fast Moving Consumer Goods (FMCG) companies in Indonesia, primarily engaged in the production, marketing and distribution of goods consumer.

PT. Unilever Indonesia Tbk is a manufacturing company in the cosmetics and household goods sub-sector and is one of the Blue Chip shares incorporated in LQ45. This is certainly an attraction for investors to choose Unilever as a stock investment.
Variable Development of PT. Unilever Indonesia Tbk from 2018 to 2021 can be presented as follows:

![Graph showing share price development](image-url)

Source: Data processed, 2021

Figure 4. Development of the Variable Share Price of PT. Unilever Indonesia Tbk for the period January 2018 - January 2021

Based on Figure 4.3 it can be seen that the share price of PT. Unilever Indonesia Tbk on January 2, 2018 amounted to 11,175 and then dropped to 9,280 on January 2, 2019. According to Akbar, (2021) the share price of PT. Unilever Indonesia Tbk experienced a decline in 2019 due to negative sentiment about the Unilever company which stated that there was an economic slowdown in South Asia, which is one of Unilever's largest markets. This caused Unilever shares traded on the London stock exchange to suffer a loss of 6%. Unwittingly, this negative sentiment had an impact on the share price of PT. Unilever in Indonesia because many investors sold Unilever shares coupled with the company's net profit that fell. One of the reasons for the decline in profits is the decline in the company's revenue, in addition to that, the cost of goods sold has increased from the previous Rp. 5.25 trillion to Rp. 5.35 trillion (Wareza, 2019).

B. Share Price Forecasting PT. Unilever Indonesia Tbk Using the Arima Model

In this section, we will discuss the processing of data on the share price of PT. Unilever Indonesia Tbk in daily units from January 2018 to June 2021 using the ARIMA method using Eviews 12 software. The steps taken are as follows:

I. Model Identification

a. Data Stationarity

   This study conducted a stationarity test using the graphical method and the Augmented Dickey-Fuller test (ADF Test).

   1) Graph Method
To see the stationarity of the data can be done with the graphical method. The results of the stationarity test of Unilever’s stock price data using the graphical method are as follows:

Based on Figure 4.4 it can be seen that the plot of data obtained shows an up and down trend and does not focus on the median value which indicates that Unilever’s share price data is not stationary.

2) **Augmented Dickey-Fuller Test (ADF Test)**

Based on the test with the graphical method, it is known that the data is not stationary. Based on the ADF test, the stationarity of Unilever’s share price data can be seen as follows:

**Table 1 ADF Test At Level**

<table>
<thead>
<tr>
<th>Test Type</th>
<th>t-Statistics</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller</td>
<td>-1.427604</td>
<td>0.5699</td>
</tr>
<tr>
<td>Test critical values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% levels</td>
<td>-3.436138</td>
<td></td>
</tr>
<tr>
<td>5% levels</td>
<td>-2.863984</td>
<td></td>
</tr>
<tr>
<td>10% levels</td>
<td>-2.568122</td>
<td></td>
</tr>
</tbody>
</table>

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(UNVR)
Method: Least Squares
Date: 08/09/22 Time: 10:29
Sample (adjusted): 1/03/2018 6/30/2021
Included observations: 1089 after adjustments

<table>
<thead>
<tr>
<th>Variables</th>
<th>coefficient</th>
<th>std. Error</th>
<th>t-Statistics</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNVR(-1)</td>
<td>-0.002985</td>
<td>0.002091</td>
<td>-1.427604</td>
<td>0.1537</td>
</tr>
<tr>
<td>C</td>
<td>16.59536</td>
<td>16.33640</td>
<td>1.015852</td>
<td>0.3099</td>
</tr>
</tbody>
</table>

R-squared   0.001871 Mean dependent var -5.881543
Adjusted R-squared 0.000953 SD dependent var 143.8702
SE of regression 143.8016 Akaike info criterion 12.77658
Sum squared resid 22477959 Schwarz criterion 12.78578
Likelihood logs -6954,848 Hannan Quinn Criter. 12.78005
F-statistics 2.038053 Durbin-Watson stat 2.127469
Prob(F-statistic) 0.153693

Source: Processed data, 2021
According to (Cerelia et al., 2021) the standard for determining whether or not a data is stationary is the ADF (Augmented Dickey - Fuller) value. If the ADF value is greater than the critical value, then H0 is accepted, which means there is a unit root and it is not stationary. Conversely, if the ADF value is less than the critical value of 5% then H0 is rejected which means there is no unit root and the data is stationary. In addition, whether a data is stationary or not can be seen through the prob* where if the prob* <0.05 then the data is said to be stationary.

Based on Table 4.1, it is known that the ADF value for Unilever’s share price variable has a value of (-1.427604) > a critical value of 5% (-3.436138) then a prob* value of 0.5699 > 0.05 so it is concluded that the data is not stationary at levels.

2. **Parameter Estimation**

After knowing several potential ARIMA models, parameter estimation is then carried out for these models. The estimation results of the ARIMA model parameters (1,1,0) are as follows:

Table 2 ARIMA Model Parameter Estimation (1,1,0)

Dependent Variable: D(UNVR)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 08/04/22 Time: 16:45
Sample: 1/03/2018 6/30/2021
Included observations: 1089
Convergence achieved after 12 iterations
Coefficient covariance is computed using outer product of gradients

<table>
<thead>
<tr>
<th>Variables</th>
<th>coefficient</th>
<th>std. Error</th>
<th>t-Statistics</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-5.849939</td>
<td>4.287985</td>
<td>-1.364263</td>
<td>0.1728</td>
</tr>
<tr>
<td>AR(1)</td>
<td>-0.068986</td>
<td>0.022230</td>
<td>-3.103285</td>
<td>0.0020</td>
</tr>
<tr>
<td>SIGMASQ</td>
<td>20581.74</td>
<td>472.8647</td>
<td>43.52563</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.004733, Mean dependent var: -5.881543
Adjusted R-squared: 0.002900, SD dependent var: 143.8702
SE of regression: 143.6614, Akaike info criterion: 12.77555
Sum squared residue: 22413510, Schwarz criterion: 12.78931
Likelihood logs: -6953.287, Hannan-Quinn criterion: 12.78076
F-statistics: 2.582396, Durbin-Watson stat: 2.002438
Prob (F-statistic): 0.076057

Inverted AR Roots: -.07

Source: Data processed, 2021

Based on Table 2, it can be seen that the results of the AR coefficient (1) are -0.068986, the t-statistic value is -3.103285 and the prob* value is 0.0020. Based on the analysis, it is known that the ARIMA parameter (1,1,0) is suitable for forecasting because the model parameter has a prob* value of less than 0.05.

3. Best Model Selection

Based on the results of parameter estimation of the potential ARIMA model, the best ARIMA model was selected which can be used to forecast Unilever’s share price. According to Putri & Aghsilni (2019), choosing the best model can be done by looking at the smallest value of the Akaike Information Criterion (AIC), Schwartz criterion (SC) and Hannan-Quinn Criterion (HQC). The following is a table of AIC, SC and HQC values:

<table>
<thead>
<tr>
<th>ARIMA models (p,d,q)</th>
<th>AIC value</th>
<th>SC value</th>
<th>HQC value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(1,1,0)</td>
<td>12.77555</td>
<td>12.78931</td>
<td>12.78076</td>
</tr>
<tr>
<td>ARIMA(0,1,1)</td>
<td>12.77476</td>
<td>12.78851</td>
<td>12.77996</td>
</tr>
<tr>
<td>ARIMA(1,1,1)</td>
<td>12.77383</td>
<td>12.7 8 217</td>
<td>12.7 7 077</td>
</tr>
</tbody>
</table>

Source: Data processed, 2021

Table 3 shows that the smallest AIC, SC and HQC values are in the ARIMA model (1,1,1) with an AIC value of 12.77383, SC of 12.7 8 217 and HQC of 12.7
7,077, it can be concluded that the best model is ARIMA (1,1,1) and will be used for the next stage.

4. Diagnostic Checking

The diagnostic checking stage is the checking and testing stage whether the model fits the data and meets the requirements of a good forecasting model by examining the residual white noise assumption. Examination of residual white noise is carried out to determine whether the variance is constant or not. This test uses the Ljung-Box test statistic. The Ljung-Box statistical test of the ARIMA model (1,1,1) is as follows:

Table 4. Ljung-Box ACF and PACF Data Patterns

<table>
<thead>
<tr>
<th>Date: 08/09/22</th>
<th>Time: 21:05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample (adjusted): 1/03/2018 6/30/2022</td>
<td></td>
</tr>
<tr>
<td>Q-statistic probabilities adjusted for 2 ARMA terms</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.012</td>
<td>0.1652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.026</td>
<td>0.9990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.064</td>
<td>5.4479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.015</td>
<td>5.7000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.012</td>
<td>5.8626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.014</td>
<td>6.0835</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.011</td>
<td>6.2169</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-0.026</td>
<td>6.9480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-0.070</td>
<td>12.411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.037</td>
<td>13.924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-0.005</td>
<td>13.950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-0.010</td>
<td>14.054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.081</td>
<td>21.226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.004</td>
<td>21.244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-0.009</td>
<td>21.326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.013</td>
<td>21.526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-0.036</td>
<td>22.956</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.050</td>
<td>25.689</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.006</td>
<td>25.732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.020</td>
<td>26.196</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.034</td>
<td>27.499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>-0.039</td>
<td>29.221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.003</td>
<td>29.233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-0.006</td>
<td>29.269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-0.004</td>
<td>29.287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.073</td>
<td>35.225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.027</td>
<td>36.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-0.041</td>
<td>37.924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-0.013</td>
<td>38.109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-0.040</td>
<td>40.799</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.032</td>
<td>41.914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0.033</td>
<td>43.128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0.030</td>
<td>44.164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.015</td>
<td>44.420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-0.032</td>
<td>45.605</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-0.033</td>
<td>46.868</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Data processed, 2021

Based on Table 4, it can be seen that the bar graphs on ACF and PACF do not cross the Bartlett line so it can be concluded that this model is quite good and meets the classification for forecasting. Furthermore, to see whether the model contains white noise can also be done by looking at AR Roots and MA Roots. If the AR Roots and MA Roots points are in the unit circle, it means that
the data does not have *white noise*. The modulus value of the AR *Roots* and MA *Roots* must be less than 1 so as not to have *white noise*. The following are the results of examining *white noise* by looking at the inverse roots of AR/MA in graphical and tabular form:

![Graph of D(UNVR): Inverse Roots of AR/MA Polynomial(s)](image)

Source: Data processed, 2021
Figure 2 Polynomial Point AR/MA *Roots*

Based on Figure 2, it can be seen that the AR *Roots* and MA *Roots* points are all in the unit circle, which means that the data does not have *white noise*. Thus it can be concluded that the variance value is constant and the data is good enough so that forecasting is not problematic.

5. **Forecasting**

Using the best model that has been selected and has passed the diagnostic checking process, forecasting the stock price of PT. Unilever Indonesia Tbk for the next 30 periods which are presented in the following chart:
Based on Figure 4.7 it can be seen that the results of forecasting the stock price of PT. Unilever Indonesia Tbk using ARIMA (1,1,1) obtained an RMSE value of 140.9100, an MAE value of 97.36569 and a MAPE value of 1.366693. Of these three criteria, MAPE was chosen because it has the smallest criterion value, so it can be concluded that the forecasting results are very significant and have a very small error.

6. Share Value Validation PT. Unilever Indonesia Tbk

Source: Data processed, 2021
Figure 4. Comparison of Actual Value and Forecasted Value of PT. Unilever Indonesia Tbk

Based on Figure 4.8 it can be seen that the estimated results of the stock price forecasting of PT. Unilever Indonesia Tbk for the next 30 periods tends to experience a decline. Forecasting results follow the actual value line in each period, which means that the forecasting results have the same value as the actual value of PT. Unilever Indonesia Tbk.

According to Rahmawati et al., (2021) to find out the accuracy of the ARIMA method in predicting PT. Unilever Indonesia Tbk can be seen using the Mean Absolute Percentage Error (MAPE) by comparing the actual value and the forecast value. To compare it can use Microsoft Excel.

D. Heteroscedasticity Testing

In this section, we will discuss the processing of PT. Unilever Indonesia Tbk in daily units from January 2018 to June 2021 using the GARCH method using Eviews12 software. The steps taken are as follows:

I. Identification of Heteroscedasticity Effects

After obtaining the best ARIMA model, the next step is testing the effect of heteroscedasticity on the residual squared the best model is the ARIMA model (1,1,1).

Table 5. Identification of ARCH Effects

<table>
<thead>
<tr>
<th>Variables</th>
<th>coefficient</th>
<th>std. Error</th>
<th>t-Statistics</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>17493.17</td>
<td>1767697</td>
<td>9.896022</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID^2(-1)</td>
<td>0.141920</td>
<td>0.029977</td>
<td>4.734290</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.020211 Mean dependent var 20402.94
Adjusted R-squared 0.019319 SD dependent var 55205.17
SE of regression 54669.32 Akaike info criterion 24.65783
Based on Table 5, it can be seen that the results of the Chi-square prob* 0.0000 < 0.05 means that H0 is rejected, then the model has an element of heteroscedasticity or has an ARCH effect on the data. The existence of heteroscedasticity problems makes the assumptions of ARIMA not fulfilled, so the forecast is continued to the GARCH model.

2. GARCH Model Identification

To find out the lag in GARCH modeling, it can be used by looking at the Autocorrelation Function (ACF) and Partial Correlation Function (PACF) plots of the squared residuals of the AR(1) and MA(1) models. The results of the ACF and PACF plots are used to identify the p and q orders so that p and q will be chosen in the GARCH model.

3. Parameter Estimation

After knowing several potential GARCH models, parameter estimation of these models is then carried out. The parameter estimation results of the ARCH (1) and GARCH (1,1) models are as follows:

Table 6 Estimation of ARCH Model Parameters (1)

<table>
<thead>
<tr>
<th>Variables</th>
<th>coefficient</th>
<th>std. Error</th>
<th>z-Statistics</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-4.847131</td>
<td>2.310164</td>
<td>-2.098176</td>
<td>0.0359</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.702084</td>
<td>0.044719</td>
<td>15.69991</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.822429</td>
<td>0.033593</td>
<td>-24.48238</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared        | 0.001989    | Mean dependent var | -5.542279  |
Based on Table 6 it can be seen that the probability value of the ARCH model (1) is 0.0000 <0.05. Based on the analysis, it is known that the ARCH (1) model is suitable for forecasting because the model parameters have a probability value of less than 0.05.

4. **Best Model Selection**

Based on the results of parameter estimation of the potential ARCH (1) and GARCH (1,1) models, the best GARCH model was selected which can be used to predict the stock price of PT. Unilever Indonesia Tbk. According to Putri & Aghsini, (2019) choosing the best model can be done by looking at the smallest value of the Akaike Information Criterion (AIC), Schwartz criterion (SC) and Hannan-Quinn Criterion (HQC). The following is a table of AIC, SC and HQC values:

<table>
<thead>
<tr>
<th>GARCH model (p,q)</th>
<th>AIC value</th>
<th>SC value</th>
<th>HQC value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH (1,0)</td>
<td>12.67200</td>
<td>12.69494</td>
<td>12.68068</td>
</tr>
<tr>
<td>GARCH (1,1)</td>
<td>12.56468</td>
<td>12.59221</td>
<td>12.57510</td>
</tr>
</tbody>
</table>

Table 7 Comparison Table of AIC, SC and HQC values

Source: Data processed, 2021

Table 7 shows that the smallest AIC, SC and HQC values are found in the GARCH model (1,1) with an AIC value of 12.56468, SC of 12.59221 and HQC of 12.57510, it can be concluded that the best model is GARCH (1,1) and will be used for the next stage.

5. **ARCH-LM test**

After obtaining the best GARCH model, the next step is to do the ARCH-LM test on the GARCH model (1,1) to see whether there is an element of heteroscedasticity. If there is no element of heteroscedasticity in the model, this model is the best model and can be used for forecasting.

<table>
<thead>
<tr>
<th>Heteroskedasticity Test: ARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistics</td>
</tr>
<tr>
<td>Obs*R-squared</td>
</tr>
</tbody>
</table>

Source: Data processed, 2021
Test Equation:
Dependent Variable: WGT_RESID^2
Method: Least Squares
Date: 08/20/22 Time: 20:37
Sample (adjusted): 1/05/2018 6/30/2021
Included observations: 1087 after adjustments

<table>
<thead>
<tr>
<th>Variables</th>
<th>coefficient</th>
<th>std. Error</th>
<th>t-Statistics</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.985795</td>
<td>0.069596</td>
<td>14.16453</td>
<td>0.0000</td>
</tr>
<tr>
<td>WGT_RESID^2(-1)</td>
<td>0.015168</td>
<td>0.030355</td>
<td>0.499703</td>
<td>0.6174</td>
</tr>
</tbody>
</table>

R-squared         0.000230
Mean dependent var 1.000951
Adjusted R-squared -0.000691
SD dependent var 2.064487
SE of regression 2.065201
Akaike info criterion 4627584
Schwarz criterion 4.290170
Likelihood logs -2329,707
Hannan Quinn Criter. 4.293646
F-statistics 0.249703
Durbin-Watson stat 1.998808
Prob(F-statistic) 0.617386

Source: Data processed, 2021
Based on Table 8, the results of the ARCH-LM test can be seen that the prob* Chi-square result is 0.6170 > 0.05, meaning that H0 is not rejected, so there are no heteroscedasticity problems. This shows that the GARCH model (1,1) was selected as a model that does not contain elements of heteroscedasticity, which means that the model is the best forecasting model and can be used for the forecasting stage.

6. Forecasting

Using the best model that has been selected and has passed the diagnostic checking process, forecasting the stock price of PT. Unilever Indonesia Tbk for the next 30 periods which are presented in the following chart:
Based on Figure 4.9 it can be seen that the results of forecasting the stock price of PT. Unilever Indonesia Tbk using GARCH (1,1) obtained a RMSE value of 141.0299, an MAE value of 97.00828 and a MAPE value of 1.362524. Of these three criteria, MAPE was chosen because it has the smallest criterion value, so it can be concluded that the forecasting results are very significant and have a very small error.

E. Discussion

Based on the results of data processing that has been carried out using the ARIMA and GARCH methods to predict the stock price of PT. Unilever Indonesia Tbk is known that the ARIMA model (1,1,1) is the best model that can predict UNVR for the next 30 periods. ARIMA (1,1,1) is able to predict the stock price of PT. Unilever Indonesia Tbk accurately because it has a MAPE value of 1.69%, which means the accuracy of forecasting using this model is 98.31%. This proves that forecasting the stock price of PT. Unilever Indonesia Tbk uses daily data with the ARIMA method which is very appropriate to do. However, in modeling the share price data of PT. Unilever Indonesia Tbk using ARIMA has an element of heteroscedasticity so that forecasting continues using the GARCH model. The GARCH model (1,1) is the best model that can predict the stock price of PT. Unilever Indonesia Tbk for the next 30 periods.
periods. GARCH (1.1) has a prediction error rate in the MAPE measure of 1.91% which indicates that the forecasting accuracy is 98.09%.

Based on the MAPE value from Forecasting ARIMA and GARCH it was found that the MAPE ARIMA value (1,1,1) was 1.69% and the MAPE value GARCH (1,1) is 1.91%, it can be concluded that ARIMA forecasting (1,1,1) has a lower MAPE value compared to GARCH forecasting MAPE value (1,1) so if based on MAPE values, ARIMA forecasting is more better than forecasting GARCH in predicting the stock price of PT. Unilever Indonesia Tbk. However, in the ARIMA model there are assumptions that are not met, namely the assumption of homoscedasticity or in the model there is an element of heteroscedasticity. Heteroscedasticity is a condition where the variance and residual data varies or is not constant for each period. If this research is continued using the ARIMA model, the ability or precision of forecasting will change from time to time. So the residual variance will vary depending on how big the residual is in the past. Related to the volatility in Unilever’s stock price data, the ARIMA model will be inappropriate to use if the residual variance still contains heteroscedasticity, so you have to use the GARCH model. Where the GARCH model is a model that includes the possibility of non-constant residual variance or heteroscedasticity modeling. The GARCH model looks at the pattern of variance in the residuals so that the model formed becomes more precise with a constant variance. Therefore the best forecasting method was chosen, namely GARCH even though the MAPE value obtained was greater than ARIMA. This is because in the ARIMA model there are assumptions that are violated, namely homoscedasticity.

The results of this study are in line with the results of research by Kanal et al., (2018) which also used daily closing price data to predict the Beta Value of the Pefindo25 Index Stock which stated that GARCH (1.1) for ARNA, GARCH (1.1) for SMSM and GARCH (1.4) for TOTL is appropriate because it has good forecasting abilities in overcoming the problem of heteroscedasticity in the data. The results of this study are also in line with Chi’s research, (2018) , which uses daily closing price data for the Shanghai Composite Index which states that GARCH (1.1) is more effective in estimating and forecasting the volatility of stock returns on the Chinese stock market. However, this study is not in line with the research of Junaid et al., (2020) which used data on daily closing prices for ADRO and PTBA shares which stated that the ARIMA model was better than the GARCH model.

Throughout the research period data, Unilever’s share price fluctuated greatly due to several factors, including a decline in financial performance, the Covid-19 pandemic, coupled with an increase in raw materials, especially for oil and CPO as well as various negative sentiments in the market, causing Unilever’s share price performance to continue to decline. so it is very difficult for investors to predict, but research using the GARCH model is able to predict Unilever’s share price precisely because it can overcome volatility problems in data.

The use of the GARCH model as a forecasting method has been proven to be a good and appropriate choice for forecasting containing elements of heteroscedasticity and appropriate for short-term forecasting, so that the use of the GARCH method can be said to be included in investment analysis, namely technical analysis. Where technical analysis is an investment analysis that is widely used by investors who make short-term investments because it is practical to predict stock movements based only
on historical charts of stock price movements. Therefore, this research will be useful for investors and the public who wish to invest in the capital market because it can assist in making investment decisions.

CONCLUSION

The results showed that the best GARCH model for predicting the stock price of PT. Unilever Indonesia Tbk namely GARCH (1,1). GARCH (1,1) can predict the stock price of PT. Unilever Indonesia Tbk very well because the value of the forecast results is not much different from the actual value. This is also proven by looking at the accuracy of the GARCH model (1.1) using MAPE which has a result of 1.91, which means that the accuracy of forecasting is 98.09%.

Thank-you note

Thanks to all those who helped write this article.

REFERENCES

https://lifepal.co.id/media/saham-unvr-After-stock-split-apakah-layak-dikoleksi/
Arianto, BW (2017). Forecasting the Number of Train Passengers in Java and Sumatra Using Arima Box-Jenkins [Institute of Technology Ten November].
http://repository.its.ac.id/43384/
https://doi.org/https://doi.org/10.1234/pns.vi.29
Chowdhury, TU, & Islam, MS (2021). ARIMA Time Series Analysis in Forecasting


Unilever’s (UNVR) Share Price Continues to Fall, This Says Analysts. Retrieved 03 September 2022, from https://investasi.kontan.co.id/news/harga-saham-unilever-unvr-terus-turun-begini-kata-analis


Autoregressive Integrated Moving Average (ARIMA) as a Dengue Hemorrhagic Fever Case Forecasting Model. Journal of Environmental Health, 10 (2), 76–80. https://doi.org/10.47718/jk.10.2.1165


**Copyright and License**

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2021 Maya Citra

Published by IPI Global Press in collaboration with the Inovasi Pratama Internasional Ltd