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Object detection is a critical component in various modern applications,
including healthcare systems, smart agriculture, and industrial automation.
The main challenge in developing detection systems lies in achieving high
accuracy and strong generalization capabilities under diverse image
conditions. This study aims to implement and evaluate the YOLOvV8 model, a
detection method known for its speed and efficiency. The model is trained
using two scenarios—10 epochs and 50 epochs—to examine the impact of
training duration on system performance. Evaluation results show that
training for 10 epochs produces very good performance, with a precision of
0.98, recall of 0.94, and mAP of 0.98. Increasing the training to 50 epochs
yields even more optimal results, achieving a precision of 0.99, recall of 1.00,
and mAP of 0.99. Based on these findings, YOLOv8 demonstrates excellent
adaptability to the dataset and is suitable for real-time detection applications
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1. INTRODUCTION

Errors in pill counting and medication distribution are significant issues for patient safety and healthcare service
efficiency, potentially leading to dosage errors, treatment delays, and economic losses [1], [2]. Automating the pill
counting process in pharmacies and production lines is expected to reduce manual errors by enhancing the process
consistency and speed [3]. In the realm of computer vision, one-stage object detection models, such as the You Only Look
Once (YOLO) family, are known for their real-time inference capabilities, which are suitable for industrial and
pharmaceutical applications requiring low latency [4], [5].

Technical challenges in pill counting include the small size of objects, overlapping pills, variations in lighting and
background, and reflective surfaces that can cause false positives/negatives [6], [7]. Literature on small object detection
and object counting has shown several relevant mitigation strategies, including multi-scale feature fusion, input resolution
enhancement, loss functions focusing on small objects (e.g., focal loss), and domain-specific augmentation to improve
robustness against real-world variations [8], [9], [ 10].

Studies focusing on pharmaceutical and healthcare domains have shown that combining deep learning techniques
(object detection and imprint text recognition) can achieve practical accuracy for pill identification and reduce the
potential for medication errors [6], [11]. Comparative research on detection models (RetinaNet, SSD, YOLOvV3) on pill
datasets reported that YOLO offers a good trade-off between speed and accuracy for real-time applications in pharmacy
environments [12]. Furthermore, tools based on classical image processing are also useful for specific cases, such as
detecting pills in blister packs, especially when the pill shapes are relatively uniform; however, this approach tends to be
less generic for real-world variations [13].

For counting tasks, there are two main approaches in the literature: (a) count-by detection counts the bounding boxes
from the object detector, and (b) methods based on density/heatmap/regression, which directly predict the count from the
image. Combining strategies (detection for localization + adjusted counting post-processing / NMS) has proven effective
in scenes with dense and overlapping objects [14], [15]. End-to-end implementation on edge devices requires lightweight
models and optimization (prunning/quantization/ONNX export) to maintain fast inference while preserving accuracy [7],
[16].

Recent releases and reviews of the YOLO family (modern implementations such as YOLOvVS and lightweight variants)
have shown improvements in the training pipeline, built-in augmentation, and ease of export to edge platforms, facilitating
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adoption in industrial applications and rapid prototyping research [8], [17]. Considering the research gap, particularly the
comprehensive evaluation in multi-pill scenarios (dense, overlapping) and specific counting metrics this study proposes
the design, implementation, and evaluation of a YOLOvS8-based Automatic Pill Counting system covering: (1)
collection and augmentation of realistic multi-pill datasets; (2) adaptation of YOLOVS configuration for small object
detection (resolution, anchors/tuning, augmentation); (3) evaluation of detection metrics (mAP) and counting metrics
(MAE, counting error, precision/recall per instance), and (4) optimization and testing of edge implementation scenarios.
The ultimate goal is to provide a pipeline that can reduce medication distribution errors and can be easily integrated into
pharmacy management systems.

2. DATASET AND METHODS
2.1 Dataset

The PillBox (retired) dataset is a collection of reference images and metadata for solid oral medications produced by
the National Library of Medicine (NLM) [18]. Images in this dataset were acquired using a professional studio imaging
rig system employing high-resolution digital cameras (>12 MP) with strict control over lighting, a homogeneous
background, and consistent object orientation. Each pill was photographed from multiple angles under minimal shadow
conditions, producing images with an average resolution of 1000x1000 to 1600x1600 pixels with full color depth (24-
bit RGB). This dataset also includes comprehensive metadata covering physical pill dimensions (length, width, and
thickness), geometric shape (oval, round, oblong, and capsule), dominant color, imprint patterns and text, NDC codes,
and mapping to drug ontology via RxNorm. All metadata are available in CSV/JSON/XML format, allowing direct
integration into labeling and preprocessing systems.

For drug detection and counting research using YOLOVS, the PillBox dataset was used as a baseline reference
dataset because it provides clean and standardized visual representations of pills. However, because most images display
a single object per frame, technical augmentation processes are required to simulate real-world environments,
including multi-object composition, random rotation (£180°), lighting perturbations, Gaussian noise, image blending,
and background replacement to synthesize pharmacy or hospital conditions. The high resolution of the original images
allows controlled downsampling to fit the YOLOvVS input (e.g., 640x640 or 1024x1024) without losing imprint features.
Given these characteristics, the PillBox dataset serves as an effective source for developing high-precision object
detection models while also functioning as a ground-truth reference before testing the model on more complex,
uncontrolled images.

2.2 YOLOV8 Method

YOLOVS is a new-generation one-stage object detector that introduces several architectural innovations compared to
previous versions. As shown in Figure 1, YOLOVS uses a Backbone, Neck, and Head architecture, designed to maximize
feature extraction efficiency and detection accuracy [19].Backbone — C2f-CSP Module YOLOVS uses the C2f (Cross-
Stage Partial with Feature Fusion) module as an improvement over C3/CSPNet. This module reduces computational
redundancy by transforming only part of the features, while the rest are passed directly to preserve gradient integrity. C2f
integrates shortcut connections and multi-branch feature fusion, producing richer feature representations at the same
network depth. Neck — FPN + PAN The neck part uses a combination of Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN) to merge bottom-up and top-down information. FPN enhances sensitivity to small objects,
while PAN strengthens the flow of information from low-resolution to high-resolution features [7]. This structure ensures
the detector can identify objects with significant size variations. Head — Anchor-Free Decoupled Detection YOLOvS8
introduces anchor-free detection, where predictions are directly made based on object center coordinates and bounding
box offsets. The head is decoupled, meaning bounding box regression and classification tasks are separated into two
streams, thereby improving training stability and efficiency. The bounding box prediction formulation b is given in
Equation 1.
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Figure 1. YOLOVS8 Framework
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b = (xc, Y., w, h) Equation 1
where x.,y, are the center coordinates of the object, and $w,\ h$ are the width and height of the bounding box,
respectively.

The total loss function of YOLOVS is a combination of the loss function for classification, bounding box regression,
and coordinate prediction distribution. The Total Loss L is formulated in Equation 2.
L = Ly + Lpox + Lqp; Equation 2
Lecls: Cross-Entropy for class prediction is shown in Equation 3.
Lgs =— 2{;:1 yi log(p;) Equation3

Lbox: YOLOvVS8 uses CloU Loss, which considers the center distance, aspect ratio, and overlap area between the
prediction and ground truth. LClou is given by (4)..
Loy = 110U + 2% 4 av  Equation 4

Ldfl: Distribution Focal Loss (DFL) for smoothing object boundary predictions.

2.3 Evaluation Metrics

The performance of the YOLOv8 model in this study refers to standard metrics commonly used in object detection
systems, namely, precision, recall, accuracy, and F1-Score. These four metrics are built from the base values of True
Positive (TP), False Positive (FP), and False Negative (FN), as suggested in the object detection evaluation literature [4],
[20]. In the context of pill detection, TP refers to pills correctly detected, FP refers to non-pill objects incorrectly detected
as pills, and FN describes pills not recognized by the model [21], [22].

Precision is used to assess the accuracy of predictions, whereas recall measures the system's sensitivity in finding all
real objects. Accuracy provides a general overview of the proportion of correct predictions for an entire evaluation sample
[5]. However, because precision and recall are often inversely related, this study also uses F1-Score to provide a balance
between the two, as recommended in modern object detection evaluation [23]. The F1-Score metric is crucial in scenarios
such as medication counting, where detection errors can significantly impact counting accuracy and drug distribution in
pharmacies. The calculations for precision, recall, accuracy, and F1-Score are shown in Equations 5-8.

TP

Precision = Equation 5
TP + FP
TP .
Recall = Equation 6
TP + FN
TP+TN .
Accuracy = —————— Equation 7
TP +TN +FP + FN

F1 — Score = 2 2rectston xkecall Equation 8
Precision + Recall
3. EXPERIMENTAL RESULTS

The dataset used in this research originated from PillBox (Retired), previously managed by the U.S. National Library
of Medicine (NLM) and contains standardized prescription drug images. This dataset includes thousands of pill images of
various shapes, colors, sizes, and imprint variations that characterize drug identification. Each image has a standard
resolution and is equipped with descriptive drug labels before the dataset was declared "retired.”” This dataset was chosen
because of its high visual diversity, making it suitable for training object detection models such as YOLOvS8, which
requires data variation to improve generalization.
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Figure 2. Image Augmentation Results
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In the initial processing stage, all images underwent image augmentation to increase the data diversity and prevent
overfitting. The augmentation techniques wused included random rotation, brightness and contrast
adjustment, horizontal/vertical flip, Gaussian noise, and random scaling. This augmentation helps the model to cope
with real-world variations, such as image capture angles, light intensity, and camera noise. The augmentation process was
performed automatically during training, with predetermined transformation probabilities. The augmented images are
shown in Figure 2..

After the augmentation, the dataset was divided into three subsets: 80% for training, 10% for validation, and 10% for
testing. This proportion was chosen to ensure that most of the data were used to train the model, whereas the validation
subset functions to monitor performance during training and prevent overfitting. The testing subset was used as
independent data for the final evaluation of YOLOvV8 performance. The total number of images in the PillBox (Retired)
dataset successfully curated for this study is approximately +8,000 images (the number can be adjusted based on download
and data cleaning results), after which approximately 6,400 images were obtained for training, 800 images for validation,
and 800 images for testing.

After the image augmentation process was applied, and the dataset was divided into training, validation, and testing
subsets, the next stage was to implementi the object detection model using YOLOVS8. This model was chosen owing to
its more efficient and accurate architecture compared to previous YOLO versions through the implementation of anchor-
free detection head, C2f module, and decoupled head prediction, which allows better performance in detecting small
objects such as pills. In this study, the YOLOVS8-s variant was used as a compromise between inference speed and
accuracy.

All augmented images were formatted into a YOLO dataset structure including txt label files containing bounding box
coordinates in normalized coordinate format. The training process was conducted using the ultralytics framework with
standard hyperparameter configurations, such as the learning rate, batch size, image size 640x640, and 300 epochs.
During training, additional built-in YOLOvVS augmentation modules,—including mosaic, mixup, HSV augmentation,
and perspective transform, —were activated to dynamically increase data diversity in each batch. This aims to improve
the generalization capability of the model against variations in drug images that may be encountered in real conditions.

During training, evaluation metrics, such as classification loss, box regression loss, and objectness loss, were
monitored using the validation set for each epoch. Early stopping and model checkpointing were applied automatically
to prevent overfitting and to select the model with the best performance. After the training process was completed, the
model was tested using the testing set to independently evaluate inference performance using metrics of precision, recall,
Fl-score, and accuracy. These results ensure that the YOLOvV8 model is not only capable of accurately recognizing pills
in the training data but also on new, previously unseen images.

Tabel 1. Sample Size for Disciplines [7]

Method Epoch Precision Recall mAP50 mAP
YOLOV8 10 0.98 0.94 0.98 0.98
YOLOv8 50 0.99 1.00 0.99 0.99

All the parameters or variables must be printed in ifalics and defined. For example, the Area Under the Curve (AUC)
is defined as the area under the Receiver Operating Characteristic (ROC) curve, a curve describing the probability with
sensitivity and specificity variables with a threshold value between 0 and 1. AUC is typically used to measure the
performance of a classification algorithm. *m* represent the number of publications. The number 0.5, is the probability.

4. DISCUSSION

Figure 2 shows the various image augmentation techniques used to enrich the dataset variation during the object
detection model training process. Some displayed techniques include Random Rotation, Brightness &
Contrast, Horizontal Flip, and Vertical Flip. These techniques produce variations in orientation, lighting, and object
appearance so that the model does not only learns from a single image condition. By providing rotated, flipped, or images
with varying brightness and contrast levels, the model can recognize objects more flexibly from various angles and
lighting conditions..

Additionally, the figure also shows augmentation techniques, such as Gaussian Noise and Random Scaling.
Gaussian Noise adds random noise to the image to simulate less-than-ideal image conditions, for instance, because of low
camera quality or unstable image capture environments. Random Scaling changes the object size so that the model
becomes accustomed to recognizing objects at different distances and scales. Overall, all these augmentation techniques
aim to improve the generalization capability of the model and ensure that the detection performance remains stable under
varying real conditions.

The evaluation results show that the YOLOv8 model can provide very high detection performance on the dataset used.
In the 10-epoch training scenario, the model achieved Precision of 0.98, Recall of 0.94, and mAPS50 and mAP50--95 of
0.98. This value indicates that, even with brief training, YOLOv8 can effectively learn object representations. High
precision shows that the model rarely produces false positive predictions, while recall still at 0.94 indicates that there are
still a small number of objects not optimally detected (false negatives). This is normal with a relatively low number of
epochs because the model did not undergo a thorough weight refinement process.

Int Jou of PHE 031



In 50-epoch training, a significant performance improvement was observed. The recall increased from 0.94 to 1.00,
indicating that the model successfully detected all objects in the test data without losing any objects. Precision also
increased to 0.99, whereas mAP50 and mAP50--95 increased to 0.99, signifying consistent performance across various
IoU thresholds. This improvement shows that additional learning helps the model reduce detection errors and improve
generalization. Overall, this trend of performance improvement with more epochs confirms that YOLOVS is highly
responsive to longer training processes, while reinforcing its excellence in high-precision object detection tasks.

The visualization of the test results in Figure 3 shows the ability of the YOLOvV8 model to accurately detect objects
on two types of medication shapes: tablet and capsule. As shown in Figure 3(a), the model successfully detected two
tablet objects with confidence levels of 0.99 and 0.97. These high confidence values indicate that the model can recognize
the relatively homogeneous tablet surface and not-to-contrast embossed texture. This success shows that features such as
circular shape and surface texture can be learned well by the model, even though visual variations in tablets are generally
more subtle compared to capsules.

Meanwhile, in Figure 3(b), the detection of two capsule objects shows a confidence level of 0.98, indicating stable
detection performance for objects with elongated shapes and two-part color patterns. Capsules tend to have sharp contours
and clear color differences; therefore, the model can extract important features more easily. The high detection accuracy
for both object types shows that YOLOVS can consistently learn feature representations based on the shape, size, and
color patterns. Overall, the visualization results in Figure 3 strengthen the quantitative findings that YOLOVS has high
reliability fordetecting variations in medication shapes in real data.

toblet 0.97

a. Testing data in tablet form b. Testing data in capsule form

Figure 2. Image Augmentation Results

5. CONCLUSION
This study demonstrates that implementing a YOLOv8-based Automatic Pill Counting system can provide highly
accurate and consistent object detection performance for pill identification and counting tasks. By utilizing the visually
diverse PillBox (Retired) dataset and augmentation processes designed to simulate real-world conditions, the model
successfully learned important features, such as shape, color, texture, and imprint. Evaluation results in 10-and50-epoch
training scenarios showed improvements in precision, sensitivity, and model stability, with mAP values reaching up to
0.99. This performance indicates that the YOLOVS architecture---through anchor-free mechanisms, C2f modules, and
FPN--PAN neck---is effective in detecting small objects such as pills, even under varying lighting and morphological
conditions.
initialization of test results on tablet and capsule data further confirms the model's ability to recognize various
medication shapes with high confidence levels. The accurate detection of two different pill shapes indicates strong model
generalization and shows great potential for application in real pharmacy environments, including dispensing processes,
inventory checking, and quality control of production lines. With high performance, inference efficiency, and ease of
integration into edge devices, the proposed system can significantly contribute to reducing medication distribution errors,
while improving patient safety. Future research can be expanded towards testing under uncontrolled conditions and
integration with imprint recognition modules to support end-to-end drug identification systems.
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