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 Object detection is a critical component in various modern applications, 

including healthcare systems, smart agriculture, and industrial automation. 

The main challenge in developing detection systems lies in achieving high 

accuracy and strong generalization capabilities under diverse image 

conditions. This study aims to implement and evaluate the YOLOv8 model, a 

detection method known for its speed and efficiency. The model is trained 

using two scenarios—10 epochs and 50 epochs—to examine the impact of 

training duration on system performance. Evaluation results show that 

training for 10 epochs produces very good performance, with a precision of 

0.98, recall of 0.94, and mAP of 0.98. Increasing the training to 50 epochs 

yields even more optimal results, achieving a precision of 0.99, recall of 1.00, 

and mAP of 0.99. Based on these findings, YOLOv8 demonstrates excellent 

adaptability to the dataset and is suitable for real-time detection applications 

that require high accuracy. 
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1. INTRODUCTION 
Errors in pill counting and medication distribution are significant issues for patient safety and healthcare service 

efficiency, potentially leading to dosage errors, treatment delays, and economic losses [1], [2]. Automating the pill 

counting process in pharmacies and production lines is expected to reduce manual errors by enhancing the process 

consistency and speed [3]. In the realm of computer vision, one-stage object detection models, such as the You Only Look 

Once (YOLO) family, are known for their real-time inference capabilities, which are suitable for industrial and 

pharmaceutical applications requiring low latency [4], [5]. 

Technical challenges in pill counting include the small size of objects, overlapping pills, variations in lighting and 

background, and reflective surfaces that can cause false positives/negatives [6], [7]. Literature on small object detection 

and object counting has shown several relevant mitigation strategies, including multi-scale feature fusion, input resolution 

enhancement, loss functions focusing on small objects (e.g., focal loss), and domain-specific augmentation to improve 

robustness against real-world variations [8], [9], [10].  

Studies focusing on pharmaceutical and healthcare domains have shown that combining deep learning techniques 

(object detection and imprint text recognition) can achieve practical accuracy for pill identification and reduce the 

potential for medication errors [6], [11]. Comparative research on detection models (RetinaNet, SSD, YOLOv3) on pill 

datasets reported that YOLO offers a good trade-off between speed and accuracy for real-time applications in pharmacy 

environments [12]. Furthermore, tools based on classical image processing are also useful for specific cases, such as 

detecting pills in blister packs, especially when the pill shapes are relatively uniform; however, this approach tends to be 

less generic for real-world variations [13]. 

For counting tasks, there are two main approaches in the literature: (a) count-by detection counts the bounding boxes 

from the object detector, and (b) methods based on density/heatmap/regression, which directly predict the count from the 

image. Combining strategies (detection for localization + adjusted counting post-processing / NMS) has proven effective 

in scenes with dense and overlapping objects [14], [15]. End-to-end implementation on edge devices requires lightweight 

models and optimization (prunning/quantization/ONNX export) to maintain fast inference while preserving accuracy [7], 

[16]. 

Recent releases and reviews of the YOLO family (modern implementations such as YOLOv8 and lightweight variants) 

have shown improvements in the training pipeline, built-in augmentation, and ease of export to edge platforms, facilitating 
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adoption in industrial applications and rapid prototyping research [8], [17]. Considering the research gap, particularly the 

comprehensive evaluation in multi-pill scenarios (dense, overlapping) and specific counting metrics this study proposes 

the design, implementation, and evaluation of a YOLOv8-based Automatic Pill Counting system covering: (1) 

collection and augmentation of realistic multi-pill datasets; (2) adaptation of YOLOv8 configuration for small object 

detection (resolution, anchors/tuning, augmentation); (3) evaluation of detection metrics (mAP) and counting metrics 

(MAE, counting error, precision/recall per instance), and (4) optimization and testing of edge implementation scenarios. 

The ultimate goal is to provide a pipeline that can reduce medication distribution errors and can be easily integrated into 

pharmacy management systems. 

 
 

2. DATASET AND METHODS 

2.1 Dataset 

The PillBox (retired) dataset is a collection of reference images and metadata for solid oral medications produced by 

the National Library of Medicine (NLM) [18]. Images in this dataset were acquired using a professional studio imaging 

rig system employing high-resolution digital cameras (≥12 MP) with strict control over lighting, a homogeneous 

background, and consistent object orientation. Each pill was photographed from multiple angles under minimal shadow 

conditions, producing images with an average resolution of 1000×1000 to 1600×1600 pixels with full color depth (24-

bit RGB). This dataset also includes comprehensive metadata covering physical pill dimensions (length, width, and 

thickness), geometric shape (oval, round, oblong, and capsule), dominant color, imprint patterns and text, NDC codes, 

and mapping to drug ontology via RxNorm. All metadata are available in CSV/JSON/XML format, allowing direct 

integration into labeling and preprocessing systems.  

For drug detection and counting research using YOLOv8, the PillBox dataset was used as a baseline reference 

dataset because it provides clean and standardized visual representations of pills. However, because most images display 

a single object per frame, technical augmentation processes are required to simulate real-world environments, 

including multi-object composition, random rotation (±180°), lighting perturbations, Gaussian noise, image blending, 

and background replacement to synthesize pharmacy or hospital conditions. The high resolution of the original images 

allows controlled downsampling to fit the YOLOv8 input (e.g., 640×640 or 1024×1024) without losing imprint features. 

Given these characteristics, the PillBox dataset serves as an effective source for developing high-precision object 

detection models while also functioning as a ground-truth reference before testing the model on more complex, 

uncontrolled images. 

 

2.2 YOLOv8 Method 

 YOLOv8 is a new-generation one-stage object detector that introduces several architectural innovations compared to 

previous versions. As shown in Figure 1, YOLOv8 uses a Backbone, Neck, and Head architecture, designed to maximize 

feature extraction efficiency and detection accuracy [19].Backbone – C2f-CSP Module YOLOv8 uses the C2f (Cross-

Stage Partial with Feature Fusion) module as an improvement over C3/CSPNet. This module reduces computational 

redundancy by transforming only part of the features, while the rest are passed directly to preserve gradient integrity. C2f 

integrates shortcut connections and multi-branch feature fusion, producing richer feature representations at the same 

network depth. Neck – FPN + PAN The neck part uses a combination of Feature Pyramid Network (FPN) and Path 

Aggregation Network (PAN) to merge bottom-up and top-down information. FPN enhances sensitivity to small objects, 

while PAN strengthens the flow of information from low-resolution to high-resolution features [7].  This structure ensures 

the detector can identify objects with significant size variations. Head – Anchor-Free Decoupled Detection YOLOv8 

introduces anchor-free detection, where predictions are directly made based on object center coordinates and bounding 

box offsets. The head is decoupled, meaning bounding box regression and classification tasks are separated into two 

streams, thereby improving training stability and efficiency. The bounding box prediction formulation b is given in 

Equation 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. YOLOv8 Framework 



 

Int Jou of PHE  30 

𝑏̂ = (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ) Equation 1 

where 𝑥𝑐 , 𝑦𝑐   are the center coordinates of the object, and $w,\ h$ are the width and height of the bounding box, 

respectively. 

The total loss function of YOLOv8 is a combination of the loss function for classification, bounding box regression, 

and coordinate prediction distribution. The Total Loss L is formulated in Equation 2. 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑑𝑓𝑙  Equation 2 

Lcls: Cross-Entropy for class prediction is shown in Equation 3. 

𝐿𝑐𝑙𝑠 = − ∑ 𝑦𝑖
𝐶
𝑖=1   𝑙𝑜𝑔(𝑝𝑖) Equation 3 

Lbox: YOLOv8 uses CIoU Loss, which considers the center distance, aspect ratio, and overlap area between the 

prediction and ground truth. LClou is given by (4).. 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏∗)

𝑐2 + 𝛼𝑣 Equation 4 

Ldfl: Distribution Focal Loss (DFL) for smoothing object boundary predictions. 

 

2.3 Evaluation Metrics 

The performance of the YOLOv8 model in this study refers to standard metrics commonly used in object detection 

systems, namely, precision, recall, accuracy, and F1-Score. These four metrics are built from the base values of True 

Positive (TP), False Positive (FP), and False Negative (FN), as suggested in the object detection evaluation literature [4], 

[20]. In the context of pill detection, TP refers to pills correctly detected, FP refers to non-pill objects incorrectly detected 

as pills, and FN describes pills not recognized by the model [21], [22]. 

Precision is used to assess the accuracy of predictions, whereas recall measures the system's sensitivity in finding all 

real objects. Accuracy provides a general overview of the proportion of correct predictions for an entire evaluation sample 

[5]. However, because precision and recall are often inversely related, this study also uses F1-Score to provide a balance 

between the two, as recommended in modern object detection evaluation [23]. The F1-Score metric is crucial in scenarios 

such as medication counting, where detection errors can significantly impact counting accuracy and drug distribution in 

pharmacies. The calculations for precision, recall, accuracy, and F1-Score are shown in Equations 5-8. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
        Equation 5 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         Equation 6 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
       Equation 7 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
       Equation 8 

 

3. EXPERIMENTAL RESULTS 

The dataset used in this research originated from PillBox (Retired), previously managed by the U.S. National Library 

of Medicine (NLM) and contains standardized prescription drug images. This dataset includes thousands of pill images of 

various shapes, colors, sizes, and imprint variations that characterize drug identification. Each image has a standard 

resolution and is equipped with descriptive drug labels before the dataset was declared "retired.’’ This dataset was chosen 

because of its high visual diversity, making it suitable for training object detection models such as YOLOv8, which 

requires data variation to improve generalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Image Augmentation Results 
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In the initial processing stage, all images underwent image augmentation to increase the data diversity and prevent 

overfitting. The augmentation techniques used included random rotation, brightness and contrast 

adjustment, horizontal/vertical flip, Gaussian noise, and random scaling. This augmentation helps the model to cope 

with real-world variations, such as image capture angles, light intensity, and camera noise. The augmentation process was 

performed automatically during training, with predetermined transformation probabilities. The augmented images are 

shown in Figure 2.. 

After the augmentation, the dataset was divided into three subsets: 80% for training, 10% for validation, and 10% for 

testing. This proportion was chosen to ensure that most of the data were used to train the model, whereas the validation 

subset functions to monitor performance during training and prevent overfitting. The testing subset was used as 

independent data for the final evaluation of YOLOv8 performance. The total number of images in the PillBox (Retired) 

dataset successfully curated for this study is approximately ±8,000 images (the number can be adjusted based on download 

and data cleaning results), after which approximately 6,400 images were obtained for training, 800 images for validation, 

and 800 images for testing. 

After the image augmentation process was applied, and the dataset was divided into training, validation, and testing 

subsets, the next stage was to implementi the object detection model using YOLOv8. This model was chosen owing to 

its more efficient and accurate architecture compared to previous YOLO versions through the implementation of anchor-

free detection head, C2f module, and decoupled head prediction, which allows better performance in detecting small 

objects such as pills. In this study, the YOLOv8-s variant was used as a compromise between inference speed and 

accuracy. 

All augmented images were formatted into a YOLO dataset structure including txt label files containing bounding box 

coordinates in normalized coordinate format. The training process was conducted using the ultralytics framework with 

standard hyperparameter configurations, such as the learning rate, batch size, image size 640×640, and 300 epochs. 

During training, additional built-in YOLOv8 augmentation modules,⸺including mosaic, mixup, HSV augmentation, 

and perspective transform, ⸺were activated to dynamically increase data diversity in each batch. This aims to improve 

the generalization capability of the model against variations in drug images that may be encountered in real conditions. 

During training, evaluation metrics, such as classification loss, box regression loss, and objectness loss, were 

monitored using the validation set for each epoch. Early stopping and model checkpointing were applied automatically 

to prevent overfitting and to select the model with the best performance. After the training process was completed, the 

model was tested using the testing set to independently evaluate inference performance using metrics of precision, recall, 

F1-score, and accuracy. These results ensure that the YOLOv8 model is not only capable of accurately recognizing pills 

in the training data but also on new, previously unseen images.  

 
Tabel 1. Sample Size for Disciplines [7] 

Method Epoch Precision Recall mAP50 mAP 

YOLOv8 10 0.98 0.94 0.98 0.98 

YOLOv8 50 0.99 1.00 0.99 0.99 

 
 

All the parameters or variables must be printed in italics and defined. For example, the Area Under the Curve (AUC) 

is defined as the area under the Receiver Operating Characteristic (ROC) curve, a curve describing the probability with 

sensitivity and specificity variables with a threshold value between 0 and 1. AUC is typically used to measure the 

performance of a classification algorithm. *m* represent the number of publications. The number 0.5, is the probability. 

 
 

4. DISCUSSION 

Figure 2 shows the various image augmentation techniques used to enrich the dataset variation during the object 

detection model training process. Some displayed techniques include Random Rotation, Brightness & 

Contrast, Horizontal Flip, and Vertical Flip. These techniques produce variations in orientation, lighting, and object 

appearance so that the model does not only learns from a single image condition. By providing rotated, flipped, or images 

with varying brightness and contrast levels, the model can recognize objects more flexibly from various angles and 

lighting conditions.. 

Additionally, the figure also shows augmentation techniques, such as Gaussian Noise and Random Scaling. 

Gaussian Noise adds random noise to the image to simulate less-than-ideal image conditions, for instance, because of low 

camera quality or unstable image capture environments. Random Scaling changes the object size so that the model 

becomes accustomed to recognizing objects at different distances and scales. Overall, all these augmentation techniques 

aim to improve the generalization capability of the model and ensure that the detection performance remains stable under 

varying real conditions. 

The evaluation results show that the YOLOv8 model can provide very high detection performance on the dataset used. 

In the 10-epoch training scenario, the model achieved Precision of 0.98, Recall of 0.94, and mAP50 and mAP50--95 of 

0.98. This value indicates that, even with brief training, YOLOv8 can effectively learn object representations. High 

precision shows that the model rarely produces false positive predictions, while recall still at 0.94 indicates that there are 

still a small number of objects not optimally detected (false negatives). This is normal with a relatively low number of 

epochs because the model did not undergo a thorough weight refinement process. 
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In 50-epoch training, a significant performance improvement was observed. The recall increased from 0.94 to 1.00, 

indicating that the model successfully detected all objects in the test data without losing any objects. Precision also 

increased to 0.99, whereas mAP50 and mAP50--95 increased to 0.99, signifying consistent performance across various 

IoU thresholds. This improvement shows that additional learning helps the model reduce detection errors and improve 

generalization. Overall, this trend of performance improvement with more epochs confirms that YOLOv8 is highly 

responsive to longer training processes, while reinforcing its excellence in high-precision object detection tasks. 

The visualization of the test results in Figure 3 shows the ability of the YOLOv8 model to accurately detect objects 

on two types of medication shapes: tablet and capsule. As shown in Figure 3(a), the model successfully detected two 

tablet objects with confidence levels of 0.99 and 0.97. These high confidence values indicate that the model can recognize 

the relatively homogeneous tablet surface and not-to-contrast embossed texture. This success shows that features such as 

circular shape and surface texture can be learned well by the model, even though visual variations in tablets are generally 

more subtle compared to capsules. 

Meanwhile, in Figure 3(b), the detection of two capsule objects shows a confidence level of 0.98, indicating stable 

detection performance for objects with elongated shapes and two-part color patterns. Capsules tend to have sharp contours 

and clear color differences; therefore, the model can extract important features more easily. The high detection accuracy 

for both object types shows that YOLOv8 can consistently learn feature representations based on the shape, size, and 

color patterns. Overall, the visualization results in Figure 3 strengthen the quantitative findings that YOLOv8 has high 

reliability fordetecting variations in medication shapes in real data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 

This study demonstrates that implementing a YOLOv8-based Automatic Pill Counting system can provide highly 

accurate and consistent object detection performance for pill identification and counting tasks. By utilizing the visually 

diverse PillBox (Retired) dataset and augmentation processes designed to simulate real-world conditions, the model 

successfully learned important features, such as shape, color, texture, and imprint. Evaluation results in 10-and50-epoch 

training scenarios showed improvements in precision, sensitivity, and model stability, with mAP values reaching up to 

0.99. This performance indicates that the YOLOv8 architecture---through anchor-free mechanisms, C2f modules, and 

FPN--PAN neck---is effective in detecting small objects such as pills, even under varying lighting and morphological 

conditions. 

initialization of test results on tablet and capsule data further confirms the model's ability to recognize various 

medication shapes with high confidence levels. The accurate detection of two different pill shapes indicates strong model 

generalization and shows great potential for application in real pharmacy environments, including dispensing processes, 

inventory checking, and quality control of production lines. With high performance, inference efficiency, and ease of 

integration into edge devices, the proposed system can significantly contribute to reducing medication distribution errors, 

while improving patient safety. Future research can be expanded towards testing under uncontrolled conditions and 

integration with imprint recognition modules to support end-to-end drug identification systems. 
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