UNDERSTANDING THE IMPACT OF TEMPERATURE ON PILOT PERFORMANCE IN FLIGHT

https://doi.org/10.55299/jostec.v5i1.623

Authors

  • Dimas Endrawan Putra Indonesia Civil Pilot Academy of Banyuwangi
  • Efendi Indonesia Civil Pilot Academy of Banyuwangi
  • Wisnu Kuncoro Universistas PGRI Banyuwangi
  • Ikhwanul Qiram PGRI Banyuwangi University
  • Daniel Dewantoro Rumani Indonesia Civil Pilot Academy of Banyuwangi

Keywords:

Cockpit Temperature, Thermal Load, Human Health, Cessna 172, Cadets

Abstract

The cockpit of an airplane is the most important space for pilots to fly, interact and communicate with the necessary information. During flight, airplane pilots face various loads, one example is the comfortable working temperature in the cockpit. The health and performance of pilots is a crucial factor in maintaining aviation safety, considering that pilots are the most vital element in the safety aspect of the aviation industry. Currently, thermal comfort is still a topic that is not fully understood. One of the parameters related to thermal comfort in the cockpit is the room temperature in the cockpit to support the performance, comfort and health of the pilot during flight maneuvers. Based on the data that has been collected, the highest cockpit temperature is achieved at 50oC with an aircraft altitude of 1500 ft and the highest human body temperature is achieved at 37.25oC at a height of 1000 ft where based on this data according to SNI 03-6572-2001 thermal comfort is not achieved or even exceeds the threshold. borderline warm comfortable. Various things can affect thermal comfort, especially the effect of temperature on the cockpit, including cockpit design, air circulation, cockpit/aircraft materials, the effect of engine temperature and also several other factors that have a dominant role in influencing the temperature of the cockpit.

Downloads

Download data is not yet available.

References

Aikio, A. T., Cai, L., & Nygrén, T. (2012). Statistical distribution of height-integrated energy exchange rates in the ionosphere. Journal of Geophysical Research: Space Physics, 117(10). https://doi.org/10.1029/2012JA018078

Aikio, A. T., & Selkälä, A. (2009). Statistical properties of Joule heating rate, electric field and conductances at high latitudes. Annales Geophysicae, 27(7), 2661–2673. https://doi.org/10.5194/ANGEO-27-2661-2009

Aman, E., Jana, S., Athikary, K. G., & Suryanarayana, R. C. (2023). AI Inspired ATC, Based on ANN and Using NLP. SAE Technical Papers. https://doi.org/10.4271/2023-01-0985

Antonio, D., Jáuregui, G., & Couture, N. (2019). Tacsel: Shape-Changing Tactile Screen applied for Eyes-Free Interaction in Cockpit. https://hal.science/hal-02289065

Becciu, P., Menz, M. H. M., Aurbach, A., Cabrera-Cruz, S. A., Wainwright, C. E., Scacco, M., Ciach, M., Pettersson, L. B., Maggini, I., Arroyo, G. M., Buler, J. J., Reynolds, D. R., & Sapir, N. (2019). Environmental effects on flying migrants revealed by radar. Ecography, 42(5), 942–955. https://doi.org/10.1111/ECOG.03995

Bottenheft, C., Groen, E. L., Mol, D., Valk, P. J. L., Houben, M. M. J., Kingma, B. R. M., & van Erp, J. B. F. (2023). Effects of heat load and hypobaric hypoxia on cognitive performance: a combined stressor approach. Https://Doi.Org/10.1080/00140139.2023.2190062. https://doi.org/10.1080/00140139.2023.2190062

Che, W. W., Tso, C. Y., Sun, L., Ip, D. Y. K., Lee, H., Chao, C. Y. H., & Lau, A. K. H. (2019). Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy and Buildings, 201, 202–215. https://doi.org/10.1016/J.ENBUILD.2019.06.029

Huang, L., & Zhai, Z. (John). (2020). Critical review and quantitative evaluation of indoor thermal comfort indices and models incorporating solar radiation effects. Energy and Buildings, 224, 110204. https://doi.org/10.1016/J.ENBUILD.2020.110204

Köse, İ. (2022). Thermal comfort analysis of military aircraft cabin using computational fluid dynamics. https://open.metu.edu.tr/handle/11511/99496

Kuchár, P., Pirník, R., Janota, A., Malobický, B., Kubík, J., & Šišmišová, D. (2023). Passenger Occupancy Estimation in Vehicles: A Review of Current Methods and Research Challenges. Sustainability 2023, Vol. 15, Page 1332, 15(2), 1332. https://doi.org/10.3390/SU15021332

Kuncoro, W., Anam, K., Nugroho, A., & Mukhtar, A. (2022). (International Conference for Aviation Vocational Education and Training) Design a Pitot Tube Sleeve With Beep Buzzer-Based Warning Alert System & IC NE555 (Vol. 1, Issue 1). https://www.ejournal.icpa-banyuwangi.ac.id/index.php/incavet/article/view/94

Lai, D., Lian, Z., Liu, W., Guo, C., Liu, W., Liu, K., & Chen, Q. (2020). A comprehensive review of thermal comfort studies in urban open spaces. Science of The Total Environment, 742, 140092. https://doi.org/10.1016/J.SCITOTENV.2020.140092

Li, M., & Speakman, J. R. (2022). Setting Ambient Temperature Conditions to Optimize Translation of Molecular Work from the Mouse to Human: The “Goldilocks Solution.” Methods in Molecular Biology, 2448, 235–250. https://doi.org/10.1007/978-1-0716-2087-8_15/COVER

Li, X., Jiao, Z., Zhang, J., Guo, H., & Wu, F. (2022). Research on Cabin Load Evaluation of Two Types of Transport Aircraft. Lecture Notes in Electrical Engineering, 800, 361–366. https://doi.org/10.1007/978-981-16-5963-8_51/COVER

Liu, Z., Zhang, M., Cao, G., Tang, S., Liu, H., & Wang, L. (2021). Influence of air supply velocity and room temperature conditions on bioaerosols distribution in a class I operating room. Building and Environment, 204, 108116. https://doi.org/10.1016/J.BUILDENV.2021.108116

Mansi, S. A., Barone, G., Forzano, C., Pigliautile, I., Ferrara, M., Pisello, A. L., & Arnesano, M. (2021). Measuring human physiological indices for thermal comfort assessment through wearable devices: A review. Measurement, 183, 109872. https://doi.org/10.1016/J.MEASUREMENT.2021.109872

Ong, H. L., Yang, D., Chen, H., Zhou, J., Haworth, L., Zhang, J., Gibson, D., Agrawal, P., Torun, H., Wu, Q., Hou, X., & Fu, Y. Q. (2023). Integrated transparent surface acoustic wave technology for active de-fogging and icing protection on glass. Materials Chemistry and Physics, 304, 127842. https://doi.org/10.1016/J.MATCHEMPHYS.2023.127842

Prayitno, H., Putra, D. E., Anam, M. K., Kuncoro, W., & Hidayat, M. N. C. (2023). Effect of Cessna 172S Aircraft Engine Vibration on the ground on Aviator Academy Pilots. Journal of Science Technology (JoSTec), 5(1), 1–6. https://doi.org/10.55299/JOSTEC.V5I1.337

Qiram, I., Arif, R., Lnw, U., Studi Operasi Pesawat Udara, P., Penerbang Indonesia Banyuwangi, A., & Timur, J. (2022). Karakteristik Temperatur Ruang Kokpit dan Efeknya terhadap Beban Termal Pilot Cessna 172 S. SKYHAWK : Jurnal Aviasi Indonesia, 2(1), 6–10. https://doi.org/10.52074/SKYHAWK.V2I1.20

Sarris, T. E., Talaat, E. R., Palmroth, M., Dandouras, I., Armandillo, E., Kervalishvili, G., Buchert, S., Tourgaidis, S., Malaspina, D. M., Jaynes, A. N., Paschalidis, N., Sample, J., Halekas, J., Doornbos, E., Lappas, V., Jørgensen, T. M., Stolle, C., Clilverd, M., Wu, Q., … Aikio, A. (2020). Daedalus: A low-flying spacecraft for in situ exploration of the lower thermosphere-ionosphere. Geoscientific Instrumentation, Methods and Data Systems, 9(1), 153–191. https://doi.org/10.5194/GI-9-153-2020

Schennetten, K., Meier, M. M., Scheibinger, M., Aminian, N. O., Wiriadidjaja, S., Hu, X., & Liu, Y. (2021). Improving Thermal Comfort in Aircraft Cockpit Based on Optimization of Supply Air Grille. IOP Conference Series: Earth and Environmental Science, 769(4), 042059. https://doi.org/10.1088/1755-1315/769/4/042059

Taber, M. J. (2020). The influence of cockpit solar loading on offshore pilot cognitive performance. International Journal of Human Factors and Ergonomics, 7(3), 260–281. https://doi.org/10.1504/IJHFE.2020.110092

Tong, Z., & Liu, H. (2020). Modeling In-Vehicle VOCs Distribution from Cabin Interior Surfaces under Solar Radiation. Sustainability 2020, Vol. 12, Page 5526, 12(14), 5526. https://doi.org/10.3390/SU12145526

Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217, 109082. https://doi.org/10.1016/J.BUILDENV.2022.109082

Yan, Y., Li, X., Tao, Y., Fang, X., Yan, P., & Tu, J. (2022). Numerical investigation of pilots’ micro-environment in an airliner cockpit. Building and Environment, 217, 109043. https://doi.org/10.1016/J.BUILDENV.2022.109043

Yuan, F., Yao, R., Sadrizadeh, S., Li, B., Cao, G., Zhang, S., Zhou, S., Liu, H., Bogdan, A., Croitoru, C., Melikov, A., Short, C. A., & Li, B. (2022). Thermal comfort in hospital buildings – A literature review. Journal of Building Engineering, 45, 103463. https://doi.org/10.1016/J.JOBE.2021.103463

Zhou, B., Ding, L., Chen, B., Shi, H., Ao, Y., Xu, R., & Li, Y. (2021). Physiological Characteristics and Operational Performance of Pilots in the High Temperature and Humidity Fighter Cockpit Environments. Sensors 2021, Vol. 21, Page 5798, 21(17), 5798. https://doi.org/10.3390/S21175798

Published

2023-10-25

How to Cite

Dimas Endrawan Putra, Efendi, Kuncoro, W., Ikhwanul Qiram, & Daniel Dewantoro Rumani. (2023). UNDERSTANDING THE IMPACT OF TEMPERATURE ON PILOT PERFORMANCE IN FLIGHT. Journal of Science Technology (JoSTec), 5(1), 27–34. https://doi.org/10.55299/jostec.v5i1.623

Most read articles by the same author(s)