Unraveling the Research Trends of Artificial Intelligence in Aviation: A Bibliometric Analysis

Main Article Content

Sabam Danny Sulung
Muhammad Nur Cahyo Hidayat Nasrullah
Untung Lestari Nur Wibowo

Abstract

This study employs bibliometric methods utilizing VOSviewer analysis of Scopus data from 2013 to 2023 to investigate trends in artificial intelligence (AI) research within the aviation industry. The analysis reveals a substantial increase in publication volume over time, peaking at 406 articles in 2022, signifying a heightened interest in AI implementation within the aviation sector. Key publication sources notably include conferences such as AIAA IEEE Digital Avionics Systems Conference Proceedings and ACM International Conference Proceeding Series. Leading contributions in publications emerge from countries such as the United States, China, India, Germany, the United Kingdom, and France, reflecting global involvement in AI research within the aviation industry. Citation analysis identifies highly cited articles addressing topics such as Digital Twin (DT) optimization processes in aviation, AI application in aircraft navigation, and machine learning for weather forecasting. These findings underscore researchers' interest in fundamental topics such as aviation, aircraft-related artificial intelligence, flight delay, and deep learning. Furthermore, co-citation analysis delineates research clusters, illustrating thematic similarities within AI research in the aviation industry. Overall, this bibliometric analysis provides comprehensive insights into the evolution of AI research in the aviation industry, potentially guiding researchers, practitioners, and stakeholders in directing research efforts, formulating policies, and understanding current trends in the application of artificial intelligence within the aviation sector.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sulung, S. D., Nasrullah, M. N. C. H., & Wibowo, U. L. N. (2023). Unraveling the Research Trends of Artificial Intelligence in Aviation: A Bibliometric Analysis. Journal of Science Technology (JoSTec), 5(1), 42–53. https://doi.org/10.55299/jostec.v5i1.696
Section
Articles

References

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., Pozzi, S., Imbert, J.-P., Granger, G., Benhacene, R., & Babiloni, F. (2016). Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00539

Basora, L., Bry, P., Olive, X., & Freeman, F. (2021). Aircraft Fleet Health Monitoring with Anomaly Detection Techniques. Aerospace, 8(4), 103. https://doi.org/10.3390/aerospace8040103

Burak, M. F., & Küsbeci, P. (2023). Internet of things and aviation: a bibliometric and visualization analysis. Kybernetes. https://doi.org/10.1108/K-04-2023-0664

Chen, X., Wang, X., Lu, D., Chen, Y., Wu, X., Wang, S., & Wang, J. (2021). A new algorithm for generating high-speed microwave landing signals. 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), 9–13. https://doi.org/10.1109/ICBAIE52039.2021.9390016

Dixit, A., & Jakhar, S. K. (2021). Airport capacity management: A review and bibliometric analysis. Journal of Air Transport Management, 91, 102010. https://doi.org/10.1016/j.jairtraman.2020.102010

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., & Zhao, D. (2020). Flight Delay Prediction Based on Aviation Big Data and Machine Learning. IEEE Transactions on Vehicular Technology, 69(1), 140–150. https://doi.org/10.1109/TVT.2019.2954094

Gülhan, Y. P., & Kurutkan, M. N. (2021). Bibliometric Analysis of The Last 40 Years of Chest Journal. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(4), 1507–1518. https://doi.org/10.29130/dubited.891524

Gundolf, K., & Filser, M. (2013). Management Research and Religion: A Citation Analysis. Journal of Business Ethics, 112(1), 177–185. https://doi.org/10.1007/s10551-012-1240-7

He, R., Wang, J., & Zhang, Z. (2021). A Novel Aircraft Refueling Behavior Detection Model based on Deep Learning. Journal of Physics: Conference Series, 1732(1), 012058. https://doi.org/10.1088/1742-6596/1732/1/012058

Kuhn, K. D. (2018). Using structural topic modeling to identify latent topics and trends in aviation incident reports. Transportation Research Part C: Emerging Technologies, 87, 105–122. https://doi.org/10.1016/j.trc.2017.12.018

Kvasnikov, V., Ornatskyi, D., Graf, M., & Shelukha, O. (2021). Designing a computerized information processing system to build a movement trajectory of an unmanned aircraft. Eastern-European Journal of Enterprise Technologies, 1(9 (109)), 33–42. https://doi.org/10.15587/1729-4061.2021.225501

Lancho-Barrantes, B. S., & Cantu-Ortiz, F. J. (2021). Quantifying the publication preferences of leading research universities. Scientometrics, 126(3), 2269–2310. https://doi.org/10.1007/s11192-020-03790-1

Okine, E. A., Zarei, E., & Roggow, B. J. (2024). Exploring the intellectual insights in aviation safety research: A systematic literature and bibliometric review. Safety Science, 170, 106354. https://doi.org/10.1016/j.ssci.2023.106354

Pournader, M., Shi, Y., Seuring, S., & Koh, S. C. L. (2020). Blockchain applications in supply chains, transport and logistics: a systematic review of the literature. International Journal of Production Research, 58(7), 2063–2081. https://doi.org/10.1080/00207543.2019.1650976

Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. https://doi.org/10.1016/j.compag.2022.107017

Schreiber, S., Agne, S., Wolf, I., Dengel, A., & Ahmed, S. (2017). DeepDeSRT: Deep Learning for Detection and Structure Recognition of Tables in Document Images. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 1162–1167. https://doi.org/10.1109/ICDAR.2017.192

Shen, Z., Wan, X., Ye, F., Guan, X., & Liu, S. (2019). Deep Learning based Framework for Automatic Damage Detection in Aircraft Engine Borescope Inspection. 2019 International Conference on Computing, Networking and Communications (ICNC), 1005–1010. https://doi.org/10.1109/ICCNC.2019.8685593

Sheridan, T. B. (2016). Human–Robot Interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(4), 525–532. https://doi.org/10.1177/0018720816644364

Shu, F., Julien, C., & Larivière, V. (2019). Does the web of science accurately represent chinese scientific performance? Journal of the Association for Information Science and Technology, 70(10), 1138–1152. https://doi.org/10.1002/asi.24184

Siyaev, A., & Jo, G.-S. (2021). Towards Aircraft Maintenance Metaverse Using Speech Interactions with Virtual Objects in Mixed Reality. Sensors, 21(6), 2066. https://doi.org/10.3390/s21062066

Smith, T. M., Lakshmanan, V., Stumpf, G. J., Ortega, K. L., Hondl, K., Cooper, K., Calhoun, K. M., Kingfield, D. M., Manross, K. L., Toomey, R., & Brogden, J. (2016). Multi-Radar Multi-Sensor (MRMS) Severe Weather and Aviation Products: Initial Operating Capabilities. Bulletin of the American Meteorological Society, 97(9), 1617–1630. https://doi.org/10.1175/BAMS-D-14-00173.1

Song, G., Wu, J., & Wang, S. (2021). Text Mining in Management Research: A Bibliometric Analysis. Security and Communication Networks, 2021, 1–15. https://doi.org/10.1155/2021/2270276

Sulung, S. D., Rumani, D. D., Qiram, I., Nasrullah, M. N. C. H., & Wibowo, U. L. N. (2023). Impact of the fuel mixture ratio of AVGAS 100LL and RON 92 fuel on combustion characteristics. Journal of Science Technology (JoSTec), 5(1), 07–13. https://doi.org/10.55299/jostec.v5i1.478

Tsai, P., & Lai, Y. (2021). Risk Assessment of Final Approach Phase with ADS-B Trajectory Data and Weather Information using Artificial Neural Network. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 1245–1250. https://doi.org/10.1109/ITSC48978.2021.9565020

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3

Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002

Wang, X., Xu, Z., & Škare, M. (2020). A bibliometric analysis of Economic Research-Ekonomska Istraživanja (2007–2019). Economic Research-Ekonomska Istraživanja, 33(1), 865–886. https://doi.org/10.1080/1331677X.2020.1737558

Wei, Z., Liu, H., Tao, X., Pan, K., Huang, R., Ji, W., & Wang, J. (2023). Insights into the Application of Machine Learning in Industrial Risk Assessment: A Bibliometric Mapping Analysis. Sustainability, 15(8), 6965. https://doi.org/10.3390/su15086965

Yu, Z., Zhang, Y., Jiang, B., Su, C.-Y., Fu, J., Jin, Y., & Chai, T. (2021). Fractional-Order Adaptive Fault-Tolerant Synchronization Tracking Control of Networked Fixed-Wing UAVs Against Actuator-Sensor Faults via Intelligent Learning Mechanism. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5539–5553. https://doi.org/10.1109/TNNLS.2021.3059933

Zarei, E., Khan, F., & Abbassi, R. (2023). How to account artificial intelligence in human factor analysis of complex systems? Process Safety and Environmental Protection, 171, 736–750. https://doi.org/10.1016/j.psep.2023.01.067

Zhang, L., Ling, J., & Lin, M. (2022). Artificial intelligence in renewable energy: A comprehensive bibliometric analysis. Energy Reports, 8, 14072–14088. https://doi.org/10.1016/j.egyr.2022.10.347

Zinkhan, D., Eiermann, S., Klüver, C., & Klüver, J. (2021). Decision Support Systems for Air Traffic Control with Self-enforcing Networks Based on Weather Forecast and Reference Types for the Direction of Operation (pp. 404–415). https://doi.org/10.1007/978-3-030-85099-9_33

Most read articles by the same author(s)