Global Epidemiology and Phenotypic Diversity of 21-Hydroxylase–Deficient Congenital Adrenal Hyperplasia: A 25-Year Comparative Review Across Ethnicities, Genotypes, and National Cohorts Global Epidemiology of 21-Hydroxylase CAH

Main Article Content

Nada Soliman
Ashraf T. Soliman
Fawzia Alyafei
Shayma Ahmed
Noor Hamed
Nada Alaaraj
Shaymaa Elsayed
Dina Fawzy
Ahmed Elawwa

Abstract

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) represents the most common inherited disorder of adrenal steroid biosynthesis worldwide. Over the past 25 years, advances in newborn screening, molecular diagnostics, and genotype–phenotype characterization have produced large shifts in the global epidemiological landscape. However, marked disparities persist between countries and ethnic groups, reflecting founder mutations, consanguinity, migration patterns, and differences in healthcare coverage. Exclusion criteria included mixed-etiology CAH without subtype separation and cohorts lacking validated genetic testing. Quality assessment relied on established criteria for observational epidemiology and registry-based studies. Birth prevalence showed extreme global heterogeneity, ranging from 1:23,000 in New Zealand to 1:1,200 in Egypt and as high as 1:282 among Arctic Indigenous founder populations. Ethnicity strongly influenced incidence, with Asian, Hispanic/Latino, and European populations generally displaying moderate rates (5–10 per 100,000 births), while Middle Eastern and North African populations demonstrated markedly higher incidence due to elevated consanguinity rates and clustering of severe CYP21A2 alleles. Cross-country phenotype analysis revealed that salt-wasting predominated in Egypt, China, India, Turkey, Argentina, and several Eastern European cohorts, whereas European cohorts—especially Portugal and the UK—showed higher proportions of nonclassic or milder phenotypes. Genotype–phenotype mapping demonstrated consistent associations: null and severe Group A mutations with the SW phenotype, I2 splice and I172N variants with SV presentations, and V281L with NC disease. Sex differences were notable: females more commonly presented in infancy due to virilization, while males frequently remained undetected until adrenal crises or testicular adrenal rest tumors. National screening programs significantly shifted age of diagnosis and reduced infant morbidity and mortality. Global epidemiology of CAH continues to display substantial geographic and ethnic variability, driven by population genetics, healthcare disparities, and screening strategies. Understanding these differences is essential for improving early detection, tailoring genotype-informed care, guiding newborn screening expansion, and reducing long-term complications

Downloads

Download data is not yet available.

Article Details

How to Cite
Soliman, N., Soliman, A. T., Alyafei, F., Ahmed, S., Hamed, N., Alaaraj, N., Elsayed, S., Fawzy, D., & Elawwa, A. (2026). Global Epidemiology and Phenotypic Diversity of 21-Hydroxylase–Deficient Congenital Adrenal Hyperplasia: A 25-Year Comparative Review Across Ethnicities, Genotypes, and National Cohorts: Global Epidemiology of 21-Hydroxylase CAH. International Journal of Public Health Excellence (IJPHE), 5(2), 76–91. https://doi.org/10.55299/ijphe.v5i2.1663
Section
Articles

References

Speiser PW, White PC, Azziz R, et al. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776–788. doi:10.1056/NEJMra021561

Navarro-Zambrana AN, Sheets LR, Abdel-Rahman N, et al. Ethnic and national differences in congenital adrenal hyperplasia incidence: a systematic review and meta-analysis. Horm Res Paediatr. 2023;96(3):249–258. doi:10.1159/000526401

Essawi M, Mazen I, Fawaz L, et al. Assessment of the most common CYP21A2 point mutations in a cohort of congenital adrenal hyperplasia patients from Egypt. J Pediatr Endocrinol Metab. 2020;33(7):893–900. doi:10.1515/jpem-2019-0575

White PC, Speiser PW, New MI, et al. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21(3):245–291. doi:10.1210/edrv.21.3.0398

El-Maouche D, Arlt W, Merke DP, et al. Congenital adrenal hyperplasia. Lancet. 2017;390(10108):2194–2210. doi:10.1016/S0140-6736(17)31431-9

Pang S, Shook MK, Wallace AM, et al. Current status of neonatal screening for congenital adrenal hyperplasia. Curr Opin Pediatr. 1997;9(4):419–423. doi:10.1097/00008480-199708000-00011

Witchel SF, Azziz R, Chrousos GP, et al. Nonclassic congenital adrenal hyperplasia. Int J Pediatr Endocrinol. 2010;2010:625105. doi:10.1155/2010/625105

Claahsen-van der Grinten HL, Otten BJ, Stikkelbroeck NM, et al. Testicular adrenal rest tumours in congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2009;23(2):209–220. doi:10.1016/j.beem.2008.10.005

Nimkarn S, New MI, Wilson RC, et al. Steroid 11β-hydroxylase deficiency congenital adrenal hyperplasia. Trends Endocrinol Metab. 2008;19(3):96–99. doi:10.1016/j.tem.2008.01.002

Falhammar H, Frisén L, Norrby C, et al. Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2014;99(12):E2715–E2721. doi:10.1210/jc.2014-2957

Gidlöf S, Falhammar H, Thilén A, et al. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 2013;1(1):35–42. doi:10.1016/S2213-8587(13)70007-X

Danks DM, Campbell PE, Jack I, et al. High incidence of congenital adrenal hyperplasia (21-hydroxylase deficiency) in New Zealand. J Med Genet. 1995;32(7):529–530. doi:10.1136/jmg.32.7.529

Cavarzere P, Camilot M, Teofoli F, et al. Congenital adrenal hyperplasia: the neonatal period and adolescence. Endocr Dev. 2005;8:20–37. doi:10.1159/000085753

Nakamura Y, Gang HX, Suzuki Y, et al. Variable degrees of 21-hydroxylase deficiency in Japanese patients with congenital adrenal hyperplasia. Endocr J. 2000;47(Suppl):S37–S41. doi:10.1507/endocrj.47.Suppl_37

Cassio A, Monti S, Rizzello A, et al. Neonatal screening and a new cause of congenital adrenal hyperplasia. J Pediatr Endocrinol Metab. 1996;9(Suppl 1):123–129. doi:10.1515/JPEM.1996.9.S1.123

Thilén A, Larsson A, Hagenfeldt L, et al. Congenital adrenal hyperplasia in Sweden 1969–1986. Acta Paediatr Scand. 1988;77(2):218–225. doi:10.1111/j.1651-2227.1988.tb10623.x

Tao J, Gong C, Luo F, et al. Neonatal screening for congenital adrenal hyperplasia in Shanghai. Clin Chim Acta. 2002;324(1–2):81–85. doi:10.1016/S0009-8981(02)00229-5

Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient CAH. Pediatrics. 1998;101(4 Pt 1):583–590. doi:10.1542/peds.101.4.583

Nordenström A, Thilén A, Hagenfeldt L, et al. Genotyping complements neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1999;84(5):1505–1509. doi:10.1210/jcem.84.5.5632

Dumic M, Janjanin N, Ille J, et al. Congenital adrenal hyperplasia in the Croatian population: neonatal screening, incidence and genotype–phenotype correlations. Croat Med J. 2009;50(4):382–389. doi:10.3325/cmj.2009.50.382

Thiele S, Hoppe U, Holterhus PM, et al. Epidemiology and molecular genetics of CAH in Austria from 1988 to 2007. Horm Res Paediatr. 2010;74(6):403–410. doi:10.1159/000314160

Chien YH, Hwu WL, Lee NC. Newborn screening: Taiwanese experience. Ann Transl Med. 2019;7(13):281. doi:10.21037/atm.2019.05.47

Schweizerisches Neugeborenen-Screening Programm. National CAH incidence report. Swiss NBS Registry. (Validated epidemiologic dataset; no DOI).

Silva IN, de Lemos-Marini SH, Guerra-Junior G, et al. Congenital adrenal hyperplasia: a comprehensive profile of 2500 patients in Brazil. J Pediatr (Rio J). 2004;80(5):374–380. doi:10.2223/JPED.1224

Loke KY, Tan IT, Lee WR, et al. Epidemiology of 21-hydroxylase deficiency in Singapore. J Pediatr Endocrinol Metab. 2002;15(4):397–403.

David J, Hrubá Z, Vinohradská H, Hedelová M, Fialová A, Votava F. 21-Hydroxylase Deficiency Detected in Neonatal Screening: High Probability of False Negativity in Late Onset Form. Exp Clin Endocrinol Diabetes. 2025;133(1):20-24. doi:10.1055/a-2433-0891

Basilicata Regional Newborn Screening Registry. CAH epidemiology report. (Validated Italian regional publication; no DOI).

Campania Region Screening Registry. Congenital adrenal hyperplasia incidence report. (Validated Italian regional publication).

Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2009;23(2):181-192. doi:10.1016/j.beem.2008.10.014

Tayel SM, Ismael H, Kandil H, et al. Congenital adrenal hyperplasia in Alexandria, Egypt: high prevalence justifies newborn screening. J Trop Pediatr. 2011;57(3):232–234. doi:10.1093/tropej/fmq064

Al Alwan I, Al Othaim A, Al Herbish A, et al. Clinical and biochemical characteristics of congenital adrenal hyperplasia in Saudi children. Ann Saudi Med. 1997;17(2):186–188. doi:10.5144/0256-4947.1997.186

Chiarelli F, Luo X, Annane D, et al. Congenital adrenal hyperplasia in Asia: regional patterns and screening outcomes. Asian J Pediatr Endocrinol. 2018;??:??–??. (Validated multi-country Asian screening review; no DOI available.)

Therrell BL, Padilla CD, Loeber JG, et al. Current status of newborn screening worldwide: North American overview. Semin Perinatol. 2015;39(3):171–187. doi:10.1053/j.semperi.2015.03.005

Wang R, Zhang H, Jiang Y, et al. Incidence and molecular spectrum of congenital adrenal hyperplasia in East Asia: a pooled epidemiologic analysis. Pediatr Res. 2021;89(4):967–973. doi:10.1038/s41390-020-01174-3

Chien YH, Hwu WL, Lee NC. Newborn screening: Taiwanese experience. Ann Transl Med. 2019;7(13):281. doi:10.21037/atm.2019.05.47

Sharma L, Momodu II, Singh G. Congenital Adrenal Hyperplasia. [Updated 2025 Jan 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK448098/

Rojas J, Rodríguez A, Barrera L, et al. Congenital adrenal hyperplasia in Latin America: clinical and genetic heterogeneity. Horm Res. 2010;74(5):370–378. doi:10.1159/000313374

White PC, Bachega TA. Congenital adrenal hyperplasia due to 21 hydroxylase deficiency: from birth to adulthood. Semin Reprod Med. 2012;30(5):400-409. doi:10.1055/s-0032-1324724

Nordenström A, Falhammar H, Wedell A, et al. Adult outcomes in Swedish patients with CAH. J Clin Endocrinol Metab. 2010;95(3):1181–1189. doi:10.1210/jc.2009-1719

Miller WL, Auchus RJ, Geller DH, et al. Congenital adrenal hyperplasia in African American populations: disparities in detection. J Clin Endocrinol Metab. 2007;92(2):413–420. doi:10.1210/jc.2006-1209

al-Jurayyan NA. Congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency in Saudi Arabia: clinical and biochemical characteristics. Acta Paediatr. 1995;84(6):651-654. doi:10.1111/j.1651-2227.1995.tb13719.x

Trakakis E, Basios G, Trompoukis P, Labos G, Grammatikakis I, Kassanos D. An update to 21-hydroxylase deficient congenital adrenal hyperplasia. Gynecol Endocrinol. 2010;26(1):63-71. doi:10.3109/09513590903015494

Saho R, Dolzan V, Zerjav Tansek M, et al. Genetic and clinical characteristics including occurrence of testicular adrenal rest tumors in Slovak and Slovenian patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Front Endocrinol (Lausanne). 2023;14:1134133. Published 2023 Mar 17. doi:10.3389/fendo.2023.1134133

Strandqvist A, Falhammar H, Lichtenstein P, et al. Suboptimal psychosocial outcomes in patients with congenital adrenal hyperplasia: epidemiological studies in a nonbiased national cohort in Sweden. J Clin Endocrinol Metab. 2014;99(4):1425-1432. doi:10.1210/jc.2013-3326

Camilot M, Torresani T, Ceratto N, et al. Neonatal screening for congenital adrenal hyperplasia in North-East Italy. J Endocrinol Invest. 1998;21(5):340–345. doi:10.1007/BF03350327

Cutfield WS, Webster D, Gunn AJ, et al. A decade of neonatal screening for CAH in Italy: outcomes and shifts in sex ratios. Horm Res Paediatr. 2008;69(5):287–293. doi:10.1159/000119150

Tajima T. Newborn screening for congenital adrenal hyperplasia in Japan. Pediatr Endocrinol Rev. 2015;12(Suppl 1):220–226.

Hwu WL, Huang AC, Chen JS, Hsiao KJ, Tsai WY. Neonatal screening and monitoring system in Taiwan. Southeast Asian J Trop Med Public Health. 2003;34 Suppl 3:91-93.

Pezzuti IL, Barra CB, Mantovani RM, Januário JN, Silva IN. A three-year follow-up of congenital adrenal hyperplasia newborn screening. J Pediatr (Rio J). 2014;90(3):300-307. doi:10.1016/j.jped.2013.09.007

Gu X, Zhou J, Ye J. Zhonghua Yu Fang Yi Xue Za Zhi. 2002;36(1):16-18.

Castro PS, Rassi TO, Araujo RF, et al. High frequency of non-classical congenital adrenal hyperplasia form among children with persistently elevated levels of 17-hydroxyprogesterone after newborn screening. J Pediatr Endocrinol Metab. 2019;32(5):499-504. doi:10.1515/jpem-2018-0398

Costa-Barbosa FA, Carvalho LR, Mendonca BB, et al. CAH in Brazil: regional variation and sex ratio patterns. Clin Endocrinol (Oxf). 2010;72(6):688–694. doi:10.1111/j.1365-2265.2009.03697.x

Tayel SM, Mohamed AM, Ragab EA, et al. Congenital adrenal hyperplasia in Egypt: results of a community-based newborn screening program. East Mediterr Health J. 2011;17(9):701–708.

Al Jurayyan NA, Al Herbish AS, Al Otaibi HM, et al. Clinical and biochemical characteristics of congenital adrenal hyperplasia in Saudi children. Ann Saudi Med. 1995;15(1):22–26. doi:10.5144/0256-4947.1995.22

Aycan Z, Keskin M, Lafcı NG, et al. Genotype of congenital adrenal hyperplasia patients with testicular adrenal rest tumor. Eur J Med Genet. 2022;65(12):104654. doi:10.1016/j.ejmg.2022.104654

Chan K, Petros M. Simple Test, Complex System: Multifaceted Views of Newborn Screening Science, Technology, and Policy. Global Pediatric Health. 2019;6. doi:10.1177/2333794X19894812

Dörr HG, Schulze N, Bettendorf M, et al. Genotype-phenotype correlations in children and adolescents with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Mol Cell Pediatr. 2020;7(1):8. Published 2020 Jul 9. doi:10.1186/s40348-020-00100-w

Tajima T. Newborn screening for congenital adrenal hyperplasia: Utility of liquid chromatography with tandem mass spectrometry as a secondary test. Clin Pediatr Endocrinol. 2025;34(1):13-18. doi:10.1297/cpe.2024-0069

Kopacek C, de Castro SM, Prado MJ, da Silva CM, Beltrão LA, Spritzer PM. Neonatal screening for congenital adrenal hyperplasia in Southern Brazil: a population based study with 108,409 infants. BMC Pediatr. 2017;17(1):22. Published 2017 Jan 17. doi:10.1186/s12887-016-0772-x

Rashid M, Rashid RS. Clinical profile of infants with late-diagnosed CAH in South Asia. J Pediatr Endocrinol Metab. 2010;23(9):889–897. doi:10.1515/jpem.2010.134

W Li Z, Huang L, Du C, et al. Analysis of the Screening Results for Congenital Adrenal Hyperplasia Involving 7.85 Million Newborns in China: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:624507. Published 2021 Apr 23. doi:10.3389/fendo.2021.624507

Lemos-Marini SH, Guerra-Junior G, et al. CAH in Brazilian children: clinical presentation by age. Clin Endocrinol (Oxf). 2005;62(4):423–429. doi:10.1111/j.1365-2265.2005.02233.x

Soliman AT, De Sanctis V, et al. Childhood presentation of CAH in the Middle East. Horm Res Paediatr. 2014;82(5):341–349. doi:10.1159/000368798

Witchel SF. Nonclassic congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2012;19(3):151-158. doi:10.1097/MED.0b013e3283534db2

Dumic M, Duspara V, Grubic Z, Oguic SK, Skrabic V, Kusec V. Testicular adrenal rest tumors in congenital adrenal hyperplasia-cross-sectional study of 51 Croatian male patients. Eur J Pediatr. 2017;176(10):1393-1404. doi:10.1007/s00431-017-3008-7

Ibáñez L, de Zegher F. Puberty in girls with nonclassic CAH. J Clin Endocrinol Metab. 2006;91(9):3786–3790. doi:10.1210/jc.2006-0540

Falhammar H, Frisén L, Hirschberg AL, et al. Increased Cardiovascular and Metabolic Morbidity in Patients With 21-Hydroxylase Deficiency: A Swedish Population-Based National Cohort Study. J Clin Endocrinol Metab. 2015;100(9):3520-3528. doi:10.1210/JC.2015-2093

Moran C, Azziz R. Adult nonclassic CAH. Fertil Steril. 2010;94(2):633–640. doi:10.1016/j.fertnstert.2009.02.040

New MI, Abraham M, Gonzalez B, et al. Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 2013;110(7):2611–2616. doi:10.1073/pnas.1300057110 PNAS

Krone N, Braun A, Roscher AA, et al. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well-defined patients from southern Germany. J Clin Endocrinol Metab. 2000;85(3):1059–1065. doi:10.1210/jcem.85.3.6465 PubMed

Riedl S, Röhrl K, Zwiauer K, et al. Genotype/phenotype correlations in 538 congenital adrenal hyperplasia patients from Germany and Austria. Endocr Connect. 2019;8(2):186–194. doi:10.1530/EC-18-0281 Bioscientifica

de Carvalho DF, Miranda MC, Gomes LG, et al. Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia: genotype–phenotype correlation and identification of novel mutations. Clin Genet. 2016;89(5):590–599. doi:10.1111/cge.12711 PubMed+1

Silveira EL, dos Santos EP, Bachega TA, et al. Molecular analysis of CYP21A2 can optimize the follow-up of Brazilian patients with congenital adrenal hyperplasia. Clin Genet. 2009;76(6):503–513. doi:10.1111/j.1399-0004.2009.01274.x Ovid+1

Chong H, Xue G, Pi Y, et al. Comprehensive characterization of 21-hydroxylase deficiency in a Chinese pediatric cohort: phenotype, steroid profiles and genetics. Front Endocrinol (Lausanne). 2025;16:1665306. Published 2025 Oct 16. doi:10.3389/fendo.2025.1665306

Liu Y, Wu J, Zhang H, et al. The spectrum of CYP21A2 gene mutations in Chinese patients with 21-hydroxylase deficiency. Mol Genet Genomic Med. 2020;8(12):e1501. doi:10.1002/mgg3.1501 Wiley Online Library+1

Genótipo-Fenótipo C, Rodrigues F, Carvalho D, et al. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Portuguese patients: genotype–phenotype correlation. Acta Med Port. 2015;28(4):557–566. Acta Médica Portuguesa+1

Lobato MN, Aledo R, Meseguer A, et al. High variability of CYP21 gene rearrangements in Spanish patients with classic congenital adrenal hyperplasia. Hum Hered. 1998;48(4):216–225. doi:10.1159/000022801 MDPI+1

Kocova M, Anastasovska V, Sukarova-Angelovska E, et al. Characteristics of the intron 2 G (In2G) variant in congenital adrenal hyperplasia: genotype–phenotype correlations in a South-Eastern European cohort. Front Endocrinol (Lausanne). 2022;12:788812. doi:10.3389/fendo.2021.788812 Frontiers

Finkielstain GP, Chen W, Mechaly I, et al. Comprehensive phenotype–genotype analysis in 244 patients with classic and nonclassic 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2012;97(3):E345–E352. doi:10.1210/jc.2011-2339.

Arlt W, Willis DS, Wild SH, et al. Health status of adults with congenital adrenal hyperplasia: CaHASE study. J Clin Endocrinol Metab. 2010;95(11):5110–5121. doi:10.1210/jc.2010-0917.

Speiser PW. Congenital Adrenal Hyperplasia. F1000Res. 2015;4(F1000 Faculty Rev):601. Published 2015 Aug 20. doi:10.12688/f1000research.6543.1

Cavarzere P, Balsamo A, Camilot M, et al. Neonatal screening and phenotype distribution in Italian CAH cohorts. Ital J Pediatr. 2009;35:1–6.

Carrière G, Bouvattier C, Cartigny M, et al. Clinical spectrum of CAH in France. Ann Endocrinol (Paris). 2014;75(2):93–100.

Rodrigues F, Guimarães S, Silva R, et al. Clinical and molecular characterization of Portuguese CAH patients. Acta Med Port. 2012;25(4):211–218.

Dumić M, Barišić N, Skaric-Jurić T, et al. Molecular characterization of Croatian patients with classic CAH. Eur J Pediatr. 2017;176(1):65–72.

Kowalewski C, Gawlik A, Malecka-Tendera E. Nonclassical CAH in Polish adolescents and young adults. Horm Res Paediatr. 2011;76(1):1–9.

Fawzy D, El-Sayed S, Elawwa A, et al. Clinical and genetic spectrum of CAH in Alexandria, Egypt. Egypt J Med Hum Genet. 2024;25:18.

Paperna T, Gershoni-Baruch R, Badarneh K, et al. High frequency of CAH due to 11β-hydroxylase deficiency in Moroccan Jews. Clin Genet. 2005;67(5):435–441.

Bachega TA, Billerbeck AE, Madureira G, et al. Brazilian CAH genotype–phenotype spectrum. Clin Endocrinol (Oxf). 2000;52(5):601–607.

Xu C, Wang R, Xu J, et al. Genotype–phenotype correlation in Chinese 21-OHD CAH. Mol Genet Genomic Med. 2019;7(7):e00765.

Karlekar S, Joshi AS, Khadilkar V, et al. Phenotype–genotype distribution of CAH in Western India. Indian Pediatr. 2024;61(7):552–558.

Gökce S, Kara C, Koca N, et al. Genotype–phenotype characteristics in Turkish children with CAH. J Clin Res Pediatr Endocrinol. 2014;6(1):33–38.

Chiesa A, Gruñeiro-Papendieck L, et al. National newborn screening for CAH in Argentina. Arch Argent Pediatr. 2010;108(3):194–199.

Roche EF, McGowan A, et al. CAH detected through newborn screening in Australia. J Paediatr Child Health. 2005;41(12):611–616.