Obesity Model in White Male Wistar Rats: The Impact of Moringa (Moringa Oleifera) Flower Extract on Pancreatic Function as Deduced from Serum Amylase and Lipase Levels and the Histopathological Image of the Pancreas

Main Article Content

Devy
Jansen
Herlina Yani

Abstract

Diabetes and obesity go hand in hand. Antidiabetic drugs are effective in treating diabetes. However, currently available antidiabetic drugs are too expensive, do not work, and cause major side effects. A significant therapeutic option for Diabetes Mellitus and obesity is using bioactive chemicals produced by plants. This compound is efficacious, easily accessible, safe, and affordable. The main aim of this study was to determine whether pancreatic extract from Moringa oleifera flowers affected blood amylase and lipase levels, as well as the histological appearance, of obese male Wistar white rats (Rattus norvegicus). This is a True experimental study, with the research design used as a test control Group Design. The research data was then analyzed with the help of SPSS using ANOVA and Post Hoc Test with LSD technique. This researcher used 24 male rats. Treatment with Moringa oleifera flower extract improves pancreatic function in obese Wistar white rats by reducing serum lipase and amylase levels. The results of research on serum lipase and amylase levels showed that a dose of 600mg/Kg BW improved pancreatic function in white rats of the Wistar strain that were obese.

Downloads

Download data is not yet available.

Article Details

How to Cite
Devy, Jansen, & Yani, H. (2024). Obesity Model in White Male Wistar Rats: The Impact of Moringa (Moringa Oleifera) Flower Extract on Pancreatic Function as Deduced from Serum Amylase and Lipase Levels and the Histopathological Image of the Pancreas. International Journal of Public Health Excellence (IJPHE), 3(2), 559–569. https://doi.org/10.55299/ijphe.v3i2.752
Section
Articles

References

G. Ashdown-Franks et al., “Association of leisure-time sedentary behavior with fast food and carbonated soft drink consumption among 133,555 adolescents aged 12-15 years in 44 low- and middle-income countries,” Int. J. Behav. Nutr. Phys. Act., vol. 16, no. 1, pp. 1–11, 2019, doi: 10.1186/s12966-019-0796-3.

L. Li et al., “Fast food consumption among young adolescents aged 12–15 years in 54 low- and middle-income countries,” Glob. Health Action, vol. 13, no. 1, p. 1795438, 2020, doi: 10.1080/16549716.2020.1795438.

C. Khutami, S. A. Sumiwi, N. K. Khairul Ikram, and M. Muchtaridi, “The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism,” Int. J. Mol. Sci., vol. 23, no. 4, p. 2056, Feb. 2022, doi: 10.3390/ijms23042056.

Riskesdas, Laporan Provinsi Sumatera Utara Riskesdas 2018. 2019.

B. Ostro, L. Roth, B. Malig, and M. Marty, “The effects of fine particle components on respiratory hospital admissions in children,” Environ. Health Perspect., vol. 117, no. 3, pp. 475–480, 2009, doi: 10.1289/ehp.11848.

B. Giri, S. Dey, T. Das, M. Sarkar, J. Banerjee, and S. K. Dash, “Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity,” Biomed. Pharmacother., vol. 107, no. April, pp. 306–328, 2018, doi: 10.1016/j.biopha.2018.07.157.

M. Zakir et al., “Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways,” Cureus, vol. 15, no. 9, 2023, doi: 10.7759/cureus.45835.

A. Chawla, R. Chawla, and S. Jaggi, “Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?,” Indian J. Endocrinol. Metab., vol. 20, no. 4, pp. 546–553, 2016, doi: 10.4103/2230-8210.183480.

A. Rawshani et al., “Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes,” N. Engl. J. Med., vol. 376, no. 15, pp. 1407–1418, 2017, doi: 10.1056/nejmoa1608664.

U. Galicia-Garcia et al., “Pathophysiology of type 2 diabetes mellitus,” Int. J. Mol. Sci., vol. 21, no. 17, pp. 1–34, Aug. 2020, doi: 10.3390/ijms21176275.

N. Rachdaoui, “Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus,” Int. J. Mol. Sci. 2020, Vol. 21, Page 1770, vol. 21, no. 5, p. 1770, Mar. 2020, doi: 10.3390/IJMS21051770.

A. Chaudhury et al., “Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management,” Front. Endocrinol. (Lausanne)., vol. 8, no. January, 2017, doi: 10.3389/fendo.2017.00006.

C. Hu and W. Jia, “Therapeutic medications against diabetes: What we have and what we expect,” Adv. Drug Deliv. Rev., vol. 139, no. January 2019, pp. 3–15, 2018, doi: https://doi.org/10.1016/j.addr.2018.11.008.

M. Naghavi et al., “Global, regional, and national age-sex specifc mortality for 264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016,” Lancet, vol. 390, no. 10100, pp. 1151–1210, 2017, doi: 10.1016/S0140-6736(17)32152-9.

G. Roglic, “WHO Global report on diabetes: A summary,” Int. J. Noncommunicable Dis., vol. 1, no. 1, p. 3, 2016, doi: 10.4103/2468-8827.184853.

N. Malviya, S. Jain, and S. Malviya, “Antidiabetic potential of medicinal plants,” Acta Pol. Pharm. - Drug Res., vol. 67, no. 2, pp. 113–118, 2010.

B. Moradi, S. Abbaszadeh, S. Shahsavari, M. Alizadeh, and F. Beyranvand, “The most useful medicinal herbs to treat diabetes,” Biomed. Res. Ther., vol. 5, no. 8, pp. 2538–2551, 2018, doi: 10.15419/bmrat.v5i8.463.

D. K. Patel, R. Kumar, D. Laloo, and S. Hemalatha, “Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity,” Asian Pac. J. Trop. Biomed., vol. 2, no. 5, pp. 411–420, 2012, doi: 10.1016/S2221-1691(12)60067-7.

J. Bindu and R. T. Narendhirakannan, “Role of medicinal plants in the management of diabetes mellitus: a review,” 3 Biotech, vol. 9, no. 1, pp. 1–17, 2019, doi: 10.1007/s13205-018-1528-0.

N. Sharma and K. S. Bora, “Role of Medicinal Plants in the Management of Diabetes Mellitus: A Review,” J. Pharm. Res. Int., vol. 33, no. 60B, pp. 2196–2207, Dec. 2021, doi: 10.9734/JPRI/2021/V33I60B34864.

B. K. Paikra, H. K. J. Dhongade, and B. Gidwani, “Phytochemistry and Pharmacology of Moringa oleifera Lam,” J. Pharmacopuncture, vol. 20, no. 3, p. 194, Sep. 2017, doi: 10.3831/KPI.2017.20.022.

J. Ahmad, I. Khan, and R. Blundell, “Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms,” Phyther. Res., vol. 33, no. 11, pp. 2841–2848, Nov. 2019, doi: 10.1002/PTR.6473.

S. Notoatmodjo, Metodologi Penelitian Kesehatan, 3rd ed. Jakarta: Rineka Cipta, 2022.

R. H. Weichbrod, G. A. (Heidbrink) Thompson, and J. N. Norton, Management of Animal Care and Use Programs in Research, Education, and Testing, 2nd ed. Boca Raton: CRC Press Taylor & Francis Group, 2018.

B. Suwarno and A. Nugroho, Kumpulan Variabel-Variabel Penelitian Manajemen Pemasaran (Definisi & Artikel Publikasi), 1st ed. Bogor: Halaman Moeka Publishing, 2023.

I. Ghozali, Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Semarang, 2018.

S.-I. Lee et al., “Anti-obesity Effect of Monascus pilosus Mycelial Extract in High Fat Diet-induced Obese Rats,” J. Appl. Biol. Chem., vol. 54, no. 3, pp. 197–205, 2011, doi: 10.3839/jabc.2011.033.

Y. M. Belayneh, Z. Birhanu, E. M. Birru, and G. Getenet, “Evaluation of in vivo antidiabetic, antidyslipidemic, and in vitro antioxidant activities of hydromethanolic root extract of datura stramonium L. (Solanaceae),” J. Exp. Pharmacol., vol. 11, pp. 29–38, 2019, doi: 10.2147/JEP.S192264.

A. Ghorbani, R. Rashidi, and R. Shafiee-Nick, “Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review,” Biomed. Pharmacother., vol. 111, no. December 2018, pp. 947–957, 2019, doi: 10.1016/j.biopha.2018.12.127.

M. R. Choi, S. M. Kwak, S. H. Bang, J. E. Jeong, and D. J. Kim, “Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats,” J. Ginseng Res., vol. 41, no. 4, pp. 503–512, 2017, doi: 10.1016/j.jgr.2016.09.002.