The Effectiveness of Giving Binahong (Anredera cordifolia) Leaf Extract on Granulation Tissue Thickness in Healing White Rat (Rattus novergicus) Cut Wounds

Main Article Content

Putri Raina Damayanti
Andy William
Gary Wijaya

Abstract

Wounds result in loss of epithelial continuity with or without loss of underlying connective tissue. The dynamic and complex wound-healing process restores tissue integrity and balance. Medicinal plants in herbal medicine, namely Binahong, help heal wounds. This study tested binahong (Anredera cardifolia) leaf extract ointment on the thickness of granulation tissue in white rat (Rattus novergicus) incision wounds. Binahong leaf extract was applied at 15%, 25%, and 35%, then the wound was examined macroscopically and histopathologically. The type of research was a true experiment with a sample of 24 male Wistar rats, six per group, in four groups (control, treatment 1, treatment 2, treatment 3). The histopathological image of granulation tissue thickness shows that the P0 group (blue) has less collagen density. Treatment group 3 (P3) with 35% binahong leaf extract showed thick collagen. Analysis of the Shapiro-Wilk normality test and significant paired t-test values greater than p>0.05 for all groups. The Shapiro-Wilk normality test shows that the data is regularly distributed. Paired T-test showed significant differences in incision wound healing between groups (p-value <0.05). The research concludes that binahong leaf extract has antiseptic, antibacterial, and ascorbic acid properties and protects against oxidation, so it is helpful for wound healing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Damayanti, P. R., William, A., & Wijaya, G. (2024). The Effectiveness of Giving Binahong (Anredera cordifolia) Leaf Extract on Granulation Tissue Thickness in Healing White Rat (Rattus novergicus) Cut Wounds. International Journal of Public Health Excellence (IJPHE), 3(2), 581–588. https://doi.org/10.55299/ijphe.v3i2.754
Section
Articles

References

G. Biswas, Review of Forensic Medicine and Toxicology: Including Clinical and Pathological Aspects; As Per the Competency-Based Medical Education Guidelines of NMC, 5th ed. New Dehli: Jaypee Brothers Medical Pub, 2021.

P. Kolimi, S. Narala, D. Nyavanandi, A. A. A. Youssef, and N. Dudhipala, “Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements,” Cells, vol. 11, no. 15, 2022, doi: 10.3390/cells11152439.

M. Farahani and A. Shafiee, “Wound Healing: From Passive to Smart Dressings,” Adv. Healthc. Mater., vol. 10, no. 16, pp. 1–32, 2021, doi: 10.1002/adhm.202100477.

EAACI, Global Atlas of Skin Allergy. The European Academy of Allergy and Clinical Immunology, 2019. [Online]. Available: https://www.eaaci.org/images/Atlas/Global_Atlas_IV_v1.pdf

S. Khalili, S. N. Khorasani, N. Saadatkish, and K. Khoshakhlagh, “Characterization of gelatin/cellulose acetate nanofibrous scaffolds: Prediction and optimization by response surface methodology and artificial neural networks,” Polym. Sci. - Ser. A, vol. 58, no. 3, pp. 399–408, 2016, doi: 10.1134/S0965545X16030093.

R. Wintoko and A. D. N. Yadika, “Manajemen Terkini Perawatan Luka,” J. Kedokt. Univ. Lampung, vol. 4, no. 2, pp. 183–189, 2020.

E. M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, and B. Conti, “Skin wound healing process and new emerging technologies for skin wound care and regeneration,” Pharmaceutics, vol. 12, no. 8, pp. 1–30, 2020, doi: 10.3390/pharmaceutics12080735.

C. Lindholm and R. Searle, “Wound management for the 21st century: combining effectiveness and efficiency,” Int. Wound J., vol. 13, pp. 5–15, 2016, doi: 10.1111/iwj.12623.

Riskesdas, Laporan Provinsi Sumatera Utara Riskesdas 2018. 2019.

A. Sharma, S. Khanna, G. Kaur, and I. Singh, “Medicinal plants and their components for wound healing applications,” Futur. J. Pharm. Sci., vol. 7, no. 1, 2021, doi: 10.1186/s43094-021-00202-w.

C. S. Moniaga, M. Tominaga, and K. Takamori, “Mechanisms and management of itch in dry skin,” Acta Derm. Venereol., vol. 100, no. 1, pp. 10–21, 2020, doi: 10.2340/00015555-3344.

D. M. Reilly and J. Lozano, “Skin collagen through the lifestages: importance for skin health and beauty,” Plast. Aesthetic Res., vol. 8, 2021, doi: 10.20517/2347-9264.2020.153.

E. Rezvani Ghomi, S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, and S. Ramakrishna, “Wound dressings: Current advances and future directions,” J. Appl. Polym. Sci., vol. 136, no. 27, pp. 1–12, 2019, doi: 10.1002/app.47738.

M. Rodrigues, N. Kosaric, C. A. Bonham, and G. C. Gurtner, “Wound healing: A cellular perspective,” Physiol. Rev., vol. 99, no. 1, pp. 665–706, 2019, doi: 10.1152/physrev.00067.2017.

M. H. A. M. AL-kahfaji, “Human Skin Infection A Review Study,” Biomed. Chem. Sci., vol. 1, no. 4, pp. 254–258, 2022, doi: 10.48112/bcs.v1i4.259.

M. O. Wynn, “The impact of infection on the four stages of acute wound healing : an overview,” Wounds UK, vol. 17, no. 2, pp. 26–32, 2021, [Online]. Available: https://www.wounds-uk.com/journals/issue/645/article-details/impact-infection-four-stages-acute-wound-healing-overview

C. Weller and G. Sussman, “Wound dressings update,” J. Pharm. Pract. Res., vol. 36, no. 4, pp. 318–324, 2006, doi: 10.1002/j.2055-2335.2006.tb00640.x.

M. Alhajj and A. Goyal, Physiology, Granulation Tissue. LMU-DCOM: StatPearls Publishing, Treasure Island (FL), 2023. [Online]. Available: http://europepmc.org/abstract/MED/32119289

J. A. Duke, M. J. Bogenschutz-Godwin, J. DuCellier, P.-A. K. Duke, and R. Kumar, Handbook of Medicinal Herbs Second Edition, Kindle Edi., vol. 5, no. 1. Florida: CRC Press, 2022. doi: 10.1097/00004850-199001000-00014.

A. Rasool, K. M. Bhat, A. A. Sheikh, A. Jan, and S. Hassan, “Medicinal plants: Role, distribution and future,” J. Pharmacogn. Phytochem., vol. 9, no. 2, pp. 2111–2114, 2020, [Online]. Available: www.phytojournal.com

V. W. Fam, P. Charoenwoodhipong, R. K. Sivamani, R. R. Holt, C. L. Keen, and R. M. Hackman, “Plant-Based Foods for Skin Health: A Narrative Review,” J. Acad. Nutr. Diet., vol. 122, no. 3, pp. 614–629, 2022, doi: 10.1016/j.jand.2021.10.024.

Z. Hoseinkhani, F. Norooznezhad, M. Rastegari-Pouyani, and K. Mansouri, “Medicinal plants extracts with antiangiogenic activity: Where is the link?,” Adv. Pharm. Bull., vol. 10, no. 3, pp. 370–378, 2020, doi: 10.34172/apb.2020.045.

T. M. Alba, C. M. G. de Pelegrin, and A. M. Sobottka, “Ethnobotany, ecology, pharmacology, and chemistry of Anredera cordifolia (Basellaceae): a review,” Rodriguesia, vol. 7, 2020, doi: 10.1590/2175-7860202071060.

S. M. Astuti, M. Sakinah A.M, R. Andayani B.M, and A. Risch, “Determination of Saponin Compound from Anredera cordifolia (Ten) Steenis Plant (Binahong) to Potential Treatment for Several Diseases,” J. Agric. Sci., vol. 3, no. 4, pp. 224–232, 2011, doi: 10.5539/jas.v3n4p224.

D. Lestari, E. Y. Sukandar, and I. Fidrianny, “Anredera cordifolia leaves extract as antihyperlipidemia and endothelial fat content reducer in male wistar rat,” Int. J. Pharm. Clin. Res., vol. 7, no. 6, pp. 435–439, 2015.

E. Zulfa, T. B. Prasetyo, and M. Murukmihadi, “Formulasi Salep Ekstrak Etanolik Daun Binahong (Anrederacordifolia (Ten.) Steenis) Dengan Variasi Basis Salep,” J. Ilmu Farm. Farm. Klin., vol. 12, no. 2, pp. 41–48, 2015, [Online]. Available: https://publikasiilmiah.unwahas.ac.id/index.php/Farmasi/article/view/1411

F. Tedjakusuma and D. Lo, “Functional properties of Anredera cordifolia (Ten.) Steenis: A review,” IOP Conf. Ser. Earth Environ. Sci., vol. 998, no. 1, 2022, doi: 10.1088/1755-1315/998/1/012051.

S. Notoatmodjo, Metodologi Penelitian Kesehatan, 3rd ed. Jakarta: Rineka Cipta, 2022.

B. Suwarno and A. Nugroho, Kumpulan Variabel-Variabel Penelitian Manajemen Pemasaran (Definisi & Artikel Publikasi), 1st ed. Bogor: Halaman Moeka Publishing, 2023.

I. Ghozali, Aplikasi Analisis Multivariate dengan Program IBM SPSS 25. Semarang, 2018.

L. V. Kendall et al., “Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents,” ILAR J., vol. 59, no. 2, pp. 177–194, 2018, doi: 10.1093/ilar/ily021.

V. Coger et al., “Tissue Concentrations of Zinc, Iron, Copper, and Magnesium During the Phases of Full Thickness Wound Healing in a Rodent Model,” Biol. Trace Elem. Res., vol. 191, no. 1, pp. 167–176, 2019, doi: 10.1007/s12011-018-1600-y.