Multivariate Analysis of Determinants of Student Learning Achievement: Discriminant Analysis and Random Forest Approach

Authors

  • Nadrah Nadrah Universitas Muhammadiyah Makassar, Makassar, Indonesia
  • Indah Miftah Awaliah Universitas Islam Negeri Alauddin Makassar, Makassar, Indonesia

DOI:

https://doi.org/10.55299/ijere.v4i1.1053

Keywords:

Learning Achievement, Independent Study Hours, Extracurricular Activities, Linear Discriminant Analysis, Random Forest

Abstract

This study aims to identify factors that influence student learning achievement using the Random Forest method and linear discriminant analysis (LDA). The data used include variables such as gender, part-time work, days of absence, extracurricular activities, weekly hours of independent study, and grades from various subjects. The results of the analysis show that weekly hours of independent study are the most dominant factor influencing student academic achievement, followed by involvement in extracurricular activities. In addition, student attendance was also found to be an important factor, with a significant correlation between days of absence and part-time work and gender. These findings provide valuable insights for educators and policy makers to encourage independent learning practices, support student involvement in extracurricular activities, and reduce student absenteeism. Educational strategies that focus on these factors are expected to significantly improve student academic achievement.

Downloads

References

R. S. Vieira dan M. Arends-Kuenning, “Affirmative action in Brazilian universities: Effects on the enrollment of targeted groups,” Economics of Education Review, vol. 73, hlm. 101931, Des 2019, doi: 10.1016/j.econedurev.2019.101931.

H. Jamshidifarsani, S. Garbaya, T. Lim, P. Blazevic, dan J. M. Ritchie, “Technology-based reading intervention programs for elementary grades: An analytical review,” Computers & Education, vol. 128, hlm. 427–451, Jan 2019, doi: 10.1016/j.compedu.2018.10.003.

W. R. Klecka, Discriminant analysis. Sage, 1980.

L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, hlm. 5–32, 2001, doi: 10.1023/A:1010933404324.

S. J. Min dan D. Y. Wohn, “All the news that you don’t like: Cross-cutting exposure and political participation in the age of social media,” Computers in Human Behavior, vol. 83, hlm. 24–31, Jun 2018, doi: 10.1016/j.chb.2018.01.015.

A. L. Duckworth, C. Peterson, M. D. Matthews, dan D. R. Kelly, “Grit: Perseverance and passion for long-term goals.,” Journal of Personality and Social Psychology, vol. 92, no. 6, hlm. 1087–1101, 2007, doi: 10.1037/0022-3514.92.6.1087.

K. R. Wentzel dan D. B. Miele, Ed., Handbook of Motivation at School, 0 ed. Routledge, 2009. doi: 10.4324/9780203879498.

M. Jwaifell, “A Proposed Model for Electronic Portfolio to Increase both Validating Skills and Employability,” Procedia - Social and Behavioral Sciences, vol. 103, hlm. 356–364, Nov 2013, doi: 10.1016/j.sbspro.2013.10.345.

E. J. Sintema, “Effect of COVID-19 on the Performance of Grade 12 Students: Implications for STEM Education,” EURASIA J MATH SCI T, vol. 16, no. 7, Apr 2020, doi: 10.29333/ejmste/7893.

“Student scores.” Diakses: 21 Juli 2024. [Daring]. Tersedia pada: https://www.kaggle.com/datasets/markmedhat/student-scores?resource=download

H. Du dan H. Li, “Multi-view Canonical Representation Discriminant Analysis,” dalam 2023 International Conference on Communications, Computing and Artificial Intelligence (CCCAI), Shanghai, China: IEEE, Jun 2023, hlm. 114–118. doi: 10.1109/CCCAI59026.2023.00029.

X. Li dan H. Wang, “On Mean-Optimal Robust Linear Discriminant Analysis,” dalam 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA: IEEE, Nov 2022, hlm. 1047–1052. doi: 10.1109/ICDM54844.2022.00129.

J. Kim, Y. Lee, dan Z. Liang, “The Geometry of Nonlinear Embeddings in Kernel Discriminant Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., hlm. 1–14, 2022, doi: 10.1109/TPAMI.2022.3192726.

N. Nagananda dan A. Savakis, “GILDA++: Grassmann Incremental Linear Discriminant Analysis,” dalam 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA: IEEE, Jun 2021, hlm. 4448–4456. doi: 10.1109/CVPRW53098.2021.00502.

A. F. Lapanowski dan I. Gaynanova, “Compressing large sample data for discriminant analysis,” dalam 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA: IEEE, Des 2021, hlm. 1068–1076. doi: 10.1109/BigData52589.2021.9671676.

S. Abdullah dan G. Prasetyo, “EASY ENSEMMBLE WITH RANDOM FOREST TO HANDLE IMBALANCED DATA IN CLASSIFICATION,” JFMA, vol. 3, no. 1, hlm. 39–46, Jun 2020, doi: 10.14710/jfma.v3i1.7415.

M. Y. Aldean, P. Paradise, dan N. A. Setya Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” INISTA, vol. 4, no. 2, hlm. 64–72, Jun 2022, doi: 10.20895/inista.v4i2.575.

N. Amini, T. H. Saragih, M. R. Faisal, A. Farmadi, dan F. Abadi, “IMPLEMENTASI ALGORITMA GENETIKA UNTUK SELEKSI FITUR PADA KLASIFIKASI GENRE MUSIK MENGGUNAKAN METODE RANDOM FOREST,” JIP, vol. 9, no. 1, hlm. 75–82, Nov 2022, doi: 10.33795/jip.v9i1.1028.

Z. A. Dwiyanti dan C. Prianto, “Prediksi Cuaca Kota Jakarta Menggunakan Metode Random Forest,” JTI, vol. 17, no. 2, hlm. 127–137, Okt 2023, doi: 10.36787/jti.v17i2.1136.

T. C. Herdiyani dan A. U. Zailani, “SENTIMENT ANALYSIS TERKAIT PEMINDAHAN IBU KOTA INDONESIA MENGGUNAKAN METODE RANDOM FOREST BERDASARKAN TWEET WARGA NEGARA INDONESIA,” JTSI, vol. 3, no. 2, hlm. 154–165, Sep 2022, doi: 10.35957/jtsi.v3i2.2920

Downloads

Published

2025-05-02

How to Cite

Nadrah, N., & Awaliah, I. M. (2025). Multivariate Analysis of Determinants of Student Learning Achievement: Discriminant Analysis and Random Forest Approach. International Journal of Educational Research Excellence (IJERE), 4(1), 287–295. https://doi.org/10.55299/ijere.v4i1.1053